logo
  Cita PDF
El uso de la Plata en los antibióticos del futuro
Rubén Morones Ramírez
 




 

Cepas resistentes a antibióticos

En los años 40 y 50 del siglo XX se dio un incremento en el promedio de vida del ser humano, lo que ha sido de suma trascendencia. Este incremento se debió a que se lograron desarrollar una gran variedad de antibióticos, y a su vez se pudieron producir masivamente. Como factor adicional, la sanidad en los hospitales, métodos de esterilización e higiene personal tuvieron un gran mejoramiento. Era tal el optimismo, que se llegó a pensar que la batalla contra las enfermedades infecciosas había sido ganada y eventualmente estas enfermedades iban a ser erradicadas. Se hizo famoso el caso del el cirujano general de la armada de los Estados Unidos quien se presentó ante el Congreso de la Unión de ese país haciendo la siguiente declaración: “Es tiempo de cerrar los libros en materia de las enfermedades infecciosas”. Esta confianza hizo que la investigación, dedicada a la búsqueda y el desarrollo de nuevos antibióticos, se viera mermada. La poca investigación existente en el campo se enfocaba en introducir pequeñas modificación químicas a compuestos ya existentes.15

Los resultados observados en las últimas décadas muestran claramente que se ha subestimado al rival. El desarrollo de nuevos y más eficientes antibióticos no es comparable con los mecanismos de defensa que han desarrollado y activado distintas cepas bacterianas. Los microorganismos unicelulares, son un enemigo de cuidado, y para ver esto basta analizar sus siguientes credenciales: son la forma de vida más antigua en la tierra, han sido capaces de evolucionar por más de tres mil millones de años, y son tan numerosos y biológicamente diversos que han desarrollado técnicas de supervivencia a las condiciones más inhóspitas (como el cambio en la composición química terrestre de azufre como elemento principal a oxigeno).15 Como punto irónico y una comparación con una batalla ente David y Goliat, nosotros somos la especie más joven del planeta, y nos hemos conformado con combatir bacterias patógenas utilizando compuestos que ellos mismos fabricaron. Es por esto, que era simplemente cuestión de tiempo que éstos desarrollara un mecanismo de defensa, y cabe mencionar que dada la naturaleza de los antibióticos, muchos de los mecanismo de resistencia estaban latentes y previamente codificados en su ADN.

Mecanismos de resistencia

El desarrollo de resistencia a algún agente, ya sea físico o químico, temporal o permanente, es un mecanismo evolutivo de adaptación que pretende asegurar la supervivencia del organismo. La resistencia en particular a un agente químico nocivo, como el caso los antibióticos, se genera mediante uno o una combinación de los siguientes mecanismos: inactivación del antibiótico, modificación del lugar del blanco de acción del antibiótico, modificación de la permeabilidad de la membrana celular, o la sobreproducción del blanco de acción del antibiótico hasta sobrepasar la acción nociva de éste. Sin embargo, la parte que ha atraído a los ingenieros es descifrar los mecanismos por los que estos microorganismos aprenden a desarrollar estas técnicas de resistencia. Se cree que el combate a éste “aprendizaje” es una potente arma para controlar y ganar la batalla contra las enfermedades infecciosas.

Los métodos de “aprendizaje” por los cuales las bacterias desarrollan resistencia a antibióticos involucran lo siguiente: mutaciones en su propio ADN, la transferencia de ADN entre microorganismos aldeanos de las mismas o distintas cepas, la formación de biopelículas, y un mecanismo que se caracterizó recientemente que esta basado en la formación de bacterias con un fenotipo de completo estado latente. A este fenotipo se le llama “persistente”.16,17 A continuación se describirá brevemente cada uno de estos métodos de “aprendizaje”.

Los microorganismos unicelulares han tomado ventaja de su rapidez para reproducirse y su abundante población para desarrollar elegantes estrategias de supervivencia. Durante varios de los procesos como la transducción, traducción, y replicación de la huella genética o ADN de la bacteria, a menudo surgen mutaciones o alteraciones aleatorias. Éstas se dan cambiando un gen que existe pero que no se usa, eliminando una parte del ADN, intercambiando las bases del ADN, o simplemente invirtiéndolo (Figura 3 A). Este tipo de mutaciones en la gran mayoría de los casos lleva a la muerte del organismo, sin embargo, es muy útil cuando se enfrentan ante un agente tóxico, ya que el abundante número de variaciones aumenta la posibilidad que alguno de los mutantes persista y se amplifique debido a su rápida capacidad de crecimiento. Esto es esencialmente la base de la teoría Darwiniana de la supervivencia del más fuerte.15

Las mutaciones en el propio ADN de microorganismos aleatorios no serían tan eficientes si no contaran con la virtud de compartir compulsivamente su material genético con otros microorganismos a sus alrededores. Inclusive, cuentan con distintos tipos de material genético (plásmidos, transposones, y casetes genéticos) especializados en el traspaso de información entre células en proximidad. El uso de plásmidos es el caso más común en el desarrollo de resistencia a antibióticos. Los plásmidos son pedazos de ADN extracromosómico independiente del ADN cromosómico de la bacteria, el cual contiene distintos tipos de información, en muchos casos “sabiduría” de resistencia a antibióticos específicos. Los plásmidos se pueden replicar y traspasar a las células hijas, pero también se puede transferir a otras células por conjugación, la cual solo requiere de contacto físico entre las bacterias (Figura 3 B). Los hospitales, en este caso, son las mejores escuelas para el desarrollo de plásmidos que causan resistencia, ya que las bacterias están constantemente siendo seleccionadas debido al repetido contacto con una variedad de antibióticos.18

Figura 3. Una ilustración de los distintos mecanismos de resistencia. A) Mutaciones en ADN cromosómico, lo cual permite supervivencia y amplificación del mutante en caso de ser expuesto a una condición de estrés. B) Transferencia de ADN estracromosómico, plásmidos, por medio de conjugación la cual requiere de contacto físico. C) Formación de biopelículas, compuestas de una matriz polimérica y comunidad de bacterias con fenotipos heterogéneos, los cuales permiten sobrevivir a ataques con antibióticos.

Otros mecanismos de resistencia desarrollados involucran la formación de biopelículas (Figura 3 C) y la producción de bacterias con un fenotipo en estado latente. En los últimos años se ha desarrollado la hipótesis de que estos dos mecanismos se complementan y son parte de la estrategia más poderosa de supervivencia. Las biopelículas son capaces de adherirse a superficies y las conforman comunidades de bacterias, con fenotipos heterogéneos, dentro de una densa matriz polimérica. La alta densidad de la matriz obstaculiza la penetración de antibióticos por difusión. Esto se complementa con la heterogeneidad fenotípica de la comunidad (al contar con bacterias en crecimiento, bacterias que no están creciendo, bacterias en estado estacionario y bacterias en estado latente) debido a que la eficiencia bactericida de los antibióticos en bacterias en crecimiento es de varios órdenes de magnitud menor a la de los otros tres estados. Inclusive los “persistentes”, o bacterias en estado latente, son inmunes a los antibióticos actuales. La hipótesis es que los persistentes son eliminados por nuestro sistema inmune una vez que la infección es tratada con antibióticos, sin embargo, se cree que éstos son los principales causantes de las infecciones recurrentes.16,19,20

Las infecciones causadas por cepas resistentes e infecciones recurrentes no son solo un problema de salud, dado que más de 100,000 personas mueren anualmente (cifra solo en los Estados Unidos), sino que también es un problema económico que se traduce a un gasto de más de 10 mil millones de dólares adicionales en el sistema de salud.

Incremento en la resistencia: Uso de la plata como solución

Durante décadas, el uso de antibióticos para tratar enfermedades infecciosas ha sido en repetidas ocasiones inadecuado, en la forma de tratamientos interrumpidos, y en muchas ocasiones innecesarios, como la prescripción de antibióticos para tratar simples gripas. A esto se le añade que a partir de los años 50, los antibióticos se convirtieron en la panacea de las compañías farmacéuticas. El negocio de la síntesis de antibióticos era extremadamente rentable por lo que su producción masiva llevo a que se empezaran a usar sin regulación. Los antibióticos comenzaron a usarse en la agricultura, como fertilizantes, y en la a ganadería, como aditivo al alimento de animales. Llegó un momento en que más del 50% de los antibióticos producidos eran usados en áreas que no estaban relacionadas con la salud. Como ya analizamos anteriormente, los microorganismos han desarrollado elegantes mecanismos de adaptación, por lo que estos niveles de exposición a antibióticos han acelerado el surgimiento de cepas resistentes.

Una de las soluciones propuestas al problema de la resistencia es el desarrollo de medicamentos sintéticos de base metálica.21 Un especial énfasis se le ha dado a la síntesis de una nueva familia de antibióticos basada en compuestos de plata, debido a la eficiencia mostrada en recientes estudios y la antigua trayectoria de este metal como agente microbicida. Desde la antigüedad se había observado que la plata prevenía enfermedades. Como un ejemplo, se sabe que el ejército de Alejandro Magno añadía monedas de plata a sus almacenes de agua para mantenerla pura, y la clase noble de épocas posteriores almacenaban agua en contenedores de plata y comía con utensilios fabricados de este metal. Posteriormente, durante el siglo XIX, se encontró que el nitrato de plata, una de las sales de este metal, ayudaba en la cicatrización y prevención de infecciones en quemaduras y heridas. Este uso del nitrato de plata sigue vigente en la actualidad. En la época moderna diversos compuestos de plata se venden en el mercado en forma de suplementos naturales para combatir infecciones. En los hospitales, uno de los compuestos que se usa con frecuencia es el nitrato de plata en soluciones diluidas, el cual se aplica en los ojos de recién nacidos para evitar posibles infecciones.3,22 El avance de áreas de la ciencia como la nanotecnología, biotecnología, biología de sistemas y la biología sintética dibujan un futuro optimista para estos compuestos de plata. Varias compañías ya han empezado a desarrollar éstos compuestos. Esto será el tema final de este artículo.

[15] J. Davies, Resistance redux - Infectious diseases, antibiotic resistance and the future of mankind, Embo Reports, 2008. 9, S18-S21.
[16] P.A. Smith and F.E. Romesberg, Combating bacteria and drug resistance by inhibiting mechanisms of persistence and adaptation, Nature Chemical Biology, 2007. 3, 549-556.
[17] A. Coates, Y.M. Hu, R. Bax, and C. Page, The future challenges facing the development of new antimicrobial drugs, Nature Reviews Drug Discovery, 2002. 1, 895-910.
[18] P.M. Bennett, Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria, British Journal of Pharmacology, 2008. 153, S347-S357.
[19] D. Shah, Z.G. Zhang, A. Khodursky, N. Kaldalu, K. Kurg, and K. Lewis, Persisters: a distinct physiological state of E-coli, Bmc Microbiology, 2006. 6.
[20] K. Lewis, Persister cells, dormancy and infectious disease, Nature Reviews Microbiology, 2007. 5, 48-56.
[21] S. Ray, R. Mohan, J.K. Singh, M.K. Samantaray, M.M. Shaikh, D. Panda, and P. Ghosh, Anticancer and antimicrobial metallopharmaceutical agents based on palladium, gold, and silver N-heterocyclic carbene complexes, Journal of the American Chemical Society, 2007. 129, 15042-15053.
[22] Q.L. Feng, J. Wu, G.Q. Chen, F.Z. Cui, T.N. Kim, and J.O. Kim, A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus, Journal of Biomedical Materials Research, 2000. 52, 662-668.

 

anterior

subir

siguiente

Número actual
Biblioteca de Edición Digital
Trayectos
Ecoteca

D.R. © Coordinación de Publicaciones Digitales
Dirección General de Servicios de Cómputo Académico-UNAM
Ciudad Universitaria, México D.F.
Se autoriza la reproducción total o parcial de los artículos aquí presentados,
siempre y cuando se cite la fuente completa y su dirección electrónica