Vol. 22, núm. 3 mayo-junio 2021

¿Sabías que el japonés tiene miles de onomatopeyas?

Elisa Akemi Shimazaki Miho Cita

Resumen

Las onomatopeyas son esenciales en el uso del idioma japonés; sin embargo, es un tema poco incluido durante el proceso de aprendizaje. Este trabajo es una propuesta para apoyar a los estudiantes de idioma japonés de la Escuela Nacional de Lenguas, Lingüística y Traducción (enallt) de la Universidad Nacional Autónoma de México (unam). Próximamente se incluirá este tipo de material digital en las redes sociales de la mediateca de la enallt.
Palabras clave: onomatopeya, idioma japonés, aprendizaje de idiomas.

Did you know that Japanese has thousands of onomatopoeias?

Abstract

Onomatopoeias are essential in the usage of Japanese language; however, it is a topic little explored during the learning process. This is a proposal to support the students of Japanese language of the enallt at the National Autonomous University of Mexico (unam). This type of digital material will soon be included on the social networks of enallt’s media library.
Keywords: onomatopoeia, Japanese language, language learning.


Incluso desde antes del inicio de la pandemia por la covid-19, en la mediateca de la Escuela Nacional de Lenguas, Lingüística y Traducción (enallt) de la Universidad Nacional Autónoma de México (unam), se ha estado realizando un gran esfuerzo para crear materiales digitales de apoyo, que faciliten el estudio autónomo de los estudiantes de idiomas, y el caso del japonés no es la excepción.

En este proyecto se propone crear material sobre las onomatopeyas, pues es un tema poco abarcado dentro de la enseñanza, que, sin embargo, es esencial en el aprendizaje del japonés.

Imagen 1. Korokoro. Onomatopeya al rodar un objeto.

El japonés es una lengua que utiliza mucho simbolismo, no solamente en la escritura a través de los kanji –ideogramas de origen chino, que son similares a los jeroglíficos egipcios o mayas–, sino también mediante los sonidos al hablar.

Imagen 2. Doki doki. Sonido de palpitación del corazón.

Según la definición del Diccionario de la lengua española, una onomatopeya es una “palabra cuya forma fónica imita el sonido de aquello que designa” (Real Academia Española, 2014).

Imagen 3. Guru guru. Onomatopeya usada para decir que algo está rodando o dando vueltas.

Las onomatopeyas existen en todas las lenguas; sin embargo, en el japonés existen miles y adquieren otra dimensión pues no sólo imitan los sonidos de animales y de personas, o de la naturaleza y de objetos, sino también los sonidos que hacen al moverse. Además, también representan sentimientos y emociones; condiciones o estados de ánimo.

Imagen 4. Pyon pyon. Sonido de cuando se salta.

Para los aprendices del japonés, es esencial dominar las onomatopeyas, pues éstas aparecen con gran frecuencia en los animes y mangas que tanto gustan a los estudiantes de japonés. Asimismo, son palabras imprescindibles para poder hablar como un nativo.

Imagen 5. Uki uki. Onomatopeya de cuando se está muy contento.

Gracias a mi participación en el taller de “Herramientas para la educación docente. De lo oral a lo digital”, pude materializar la idea que tenía en mente acerca de las onomatopeyas en el japonés. Próximamente tomará forma y acción, además de en este artículo, al ser publicado en las redes sociales de la mediateca de la unam.

Páginas de interés

Referencias

  • Real Academia Española (rae). (2014). Onomatopeya. En Diccionario de la lengua española (23.a ed., versión 23.4). https://dle.rae.es/onomatopeya.


Recepción: 04/02/2021. Aprobación: 18/03/2021.

Vol. 22, núm. 3 mayo-junio 2021

El cómic y el arte pop

Martha Patricia Trejo Cerón Cita

Resumen

En este video hablo sobre las características principales del Arte Pop, usando al comic como centro visual como lo hizo en su momento esta corriente artística de trasmitir un mensaje y llegar con más impacto a la sociedad, en este caso lo uso para captar de una forma más efectiva la atención de mis alumnos de un tema teórico, haciendo el material atractivo y dinámico, con el cual se puedan identificar, reflexionar y comprender lo más representativo del tema.
Palabras clave: Arte Pop, comic, video, superhéroes, pandemia.

Comic and pop art

Abstract

In this video I talk about the main characteristics of Pop Art, using the comic as a visual center as this artistic trend did at the time of transmitting a message and reaching society with more impact, in this case I use it to capture in a way more effective the attention of my students of a theoretical topic, making the material attractive and dynamic, with which they can identify, reflect and understand the most representative of the topic.
Keywords: Pop art, comic, video, superheros, pandemic.


Lo que me encanta del arte es que, en particular a través de sus diferentes manifestaciones artísticas y técnicas de pintura, podemos representar cualquier tema y época. De esta manera, se puede llegar a las personas; con un mensaje en específico se logra compartir un conocimiento o concientizar sobre algún hecho actual que afecte a la sociedad y se despierta su interés, en especial el de las nuevas generaciones, para que se involucren en lo que sucede en el mundo.

Es por ello que durante el curso “Herramientas para la comunicación docente. Entre lo oral y lo digital”, impartido por la Coordinación de Universidad Abierta, Innovación Educativa y Educación a Distancia (cuaieed), realicé un video como proyecto final, sobre el arte pop enfocado al cómic, que es algo que a través del tiempo no pasa de moda, sigue vigente y captura la atención de los jóvenes. Además, es un material que puedo usar como introducción, para esta corriente artística, en mis clases de Taller de Expresión Gráfica, al explicar sus características principales y mostrar imágenes con las que se identifiquen mis alumnos, con lo que se captura su atención y se logra desarrollar de manera más amplia el tema en clase.




Para realizar dicho video, busqué imágenes de diferentes superhéroes con los que las nuevas generaciones se identifican. En los temas musicales, el primero fue la introducción de la serie de Batman de los años sesenta, pues en su opening manejaban partes de comic. La segunda canción fue “Take on me”, del grupo A-HA, ya que su video se desarrolla dentro de una historieta a blanco y negro, y mi objetivo es que todo tuviera relación con el tema del cómic, además de que sea atractivo y deje no sólo un conocimiento, sino también un mensaje. Por ello, al final de mi video, use imágenes de superhéroes con cubrebocas, para dar a entender que, a pesar de sus poderes, no son inmunes a lo que vivimos en la actualidad a nivel mundial. Así, por la pandemia todos debemos tomar precauciones.

Cuando expuse este material en mis clases, noté a mis alumnos muy atentos, divertidos y disfrutando de la música. Yo realmente quedé satisfecha, pero no había imaginado el alcance que tendría el video; no sólo porque desperté su interés en un tema académico, sino porque de verdad hicieron una reflexión con el tema de la pandemia, hablaron de sus experiencias de haber contraído coronavirus, ellos o algún integrante de su familia. Hubo los que lamentablemente tuvieron pérdidas de familiares o amigos y los que daban gracias porque salieron adelante. Al final, el video contribuyó a que sacaran esa carga sobre el tema, ya que muchas veces ellos sólo buscan que alguien los escuche, los apoye, sentir que no están solos. Así, considero que de alguna forma, sin buscarlo, los apoyé. Es por eso que este proyecto me deja una muy grata experiencia y mucho aprendizaje, que me motivan a seguir desarrollando materiales para mis clases.

Referencias



Recepción: 04/02/2021. Aprobación: 18/03/2021.

Vol. 22, núm. 4 julio-agosto 2021

Preguntas, indeterminaciones y conjeturas

Morgana Carranco Cita


“El conocimiento nos hace responsables”

Ernesto “Che” Guevara

“Sucedía así que él crecía y yo no sabía lo propuesto,
porque el pelo crecía aprisa y yo aprendía despacio,
y con efecto le cortaba en pena de la rudeza:
que no me parecía razón
que estuviese vestida de cabellos cabeza
que estaba tan desnuda de noticias,
que era más apetecible adorno”

Sor Juana Inés de la Cruz

El camino del conocimiento no es lineal y, además del obvio esfuerzo que conlleva, está poblado de tropiezos, hipótesis equivocadas y coincidencias. El conocimiento, en todos sus ámbitos, es algo que perseguimos y perseguimos, pero que no es fijo. Por ello, este número de la Revista Digital Universitaria sintetiza las diferentes formas de explorar el conocimiento, su empleo e implicaciones para la sociedad.

En el camino del saber, aprendemos hoy algo que puede dejar de ser válido mañana. Sin embargo, el pasado y los orígenes suelen ser valiosos. En este sentido, como ejemplo de la importancia de los lugares de procedencia y del ayer, está el primer artículo del presente número de la Revista Digital Universitaria. En “Los últimos serán los primeros: la importancia de los hablantes de herencia”, conocemos sobre los hablantes de herencia, cuya primera lengua es empleada en casa y que se maneja hasta cierto grado, pues está restringida por el contexto social dominante de su segunda lengua, de la que obtienen más estímulos, por lo que ésta prevalece. Esto se da, por ejemplo, en México en las lenguas originarias con relación al contexto dominante del español y, en Estados Unidos, en hijos de inmigrantes hispanohablantes con el inglés. Aquí se resalta la importancia de recuperar esas lenguas de herencia, de revitalizarlas y resignificarlas, puesto que nos dicen mucho de nuestra cultura, historia, origen y valores, y contribuyen a construir nuestra identidad.

Asimismo, en la búsqueda de conocimiento hay algo muy bello: siempre hay más que explorar. Basta recordar que no estamos solos en la Tierra, que nos acompañan muchísimas especies, algunas más cercanas que otras. Por ello, en la presente emisión de la rdu, examinamos nuestro mundo desde varios frentes. Primero, en “Flautistas, bagels y tortillas: la vida secreta de ratas y ratones”, conocemos más acerca de los ratones y ratas, los mitos relacionados con ellos y sus verdaderos roles en nuestra vida diaria, así como en los ecosistemas.

Segundo, en “El enemigo de mi enemigo es… Un virus que ataca a las bacterias: los bacteriófagos”, profundizamos sobre estos virus que atacan a las bacterias y de los cuales se aborda su biología, su importancia en el desarrollo de la ciencia, así como su contribución a la salud y su potencial como vehículos de transporte de moléculas, diagnosis y generación de vacunas.

Tercero, en “Bacterias del maíz como aliadas en la producción agroecológica de alimentos”, conocemos que el biocontrol permite utilizar componentes biológicos (insectos, hongos y bacterias) para controlar el crecimiento de otros seres que dañan los cultivos. De este modo, exploramos los detalles de esta técnica mediante un ejemplo, en el que se usa la bacteria de la rizósfera del maíz Bacillus cereus B25 para disminuir una enfermedad en el maíz causada por un hongo infeccioso.

Por último, en relación con la diversidad en el planeta en general, y en especial en la región del Pacífico mexicano, contamos con dos artículos “Las extraordinarias formas de vida de los dinoflagelados del Pacífico mexicano” y “Medusozoos: tesoro oculto del Pacífico mexicano”. En el primero, los autores nos cuentan sobre los dinoflagelados marinos, el segundo grupo más abundante en el fitoplancton. Además, ahondan en sus funciones como producción de oxígeno y otros compuestos que pueden ser útiles para la sociedad. En el segundo texto, el tema son los meduzoos, animales de los cuales hemos oído por la existencia de especies como las medusas, pólipos y sifonóforos, que tienen gran importancia en lo ecológico, económico y social. Igualmente, se comparte más sobre su diversidad, distribución y la manera en que algunos científicos los estudian.

Sin duda, con el crecimiento de la ciencia, los humanos también hemos sido capaces de aplicarla, para tener una vida más sencilla. No obstante, hay desarrollos que en el momento de su creación pudieron parecer adecuados, pero que con el paso del tiempo representan un gran problema. Tal es el caso en “Una inundación global de plásticos”. Corresponde, entonces, como seres racionales y responsables, encontrar una solución a esta cuestión que nosotros mismos hemos provocado, para evitar que siga afectando a nuestra Tierra y que, incluso, amenace nuestra existencia.

Sin embargo, no hay que permitir que los errores del pasado limiten nuestra búsqueda de conocimientos y su aplicación, porque también hay oportunidad de llevar a cabo cambios positivos. En este sentido, en “La termoelectricidad: convirtiendo el calor en electricidad”, los autores analizan los mecanismos para la generación de electricidad —tan básica para nuestra forma de vida actual—, mediante el aprovechamiento del calor liberado por un proceso donde se realice un trabajo. Además de la alta disponibilidad de este tipo de energía, su uso nos permitiría reducir el impacto en el medio ambiente debido al uso de combustibles fósiles para la creación de electricidad.

En el ámbito social, vale la pena resaltar que, a pesar de todo el conocimiento que como humanidad poseemos, como sociedad todavía vivimos rodeados de prejuicios, discriminación y estigmas, y, lo peor, algunos se siguen perpetuando. Basta mencionar la discriminación racial o por preferencias sexuales, la violencia de género y los feminicidios. En este orden de ideas, incluso aunque se sabe que el aborto, la lactancia y la educación sexual son seguros, benéficos y eficaces, todavía nos desenvolvemos en una sociedad que los estigmatiza.

Por ello, en “Estigma hacia el aborto y sus consecuencias: acciones para reducirlo”, las autoras tratan los diferentes ámbitos en los que lamentablemente existe una satanización hacia el aborto, lo cual, además, refleja la misoginia, el machismo y la oposición de un sector de la sociedad a dejar que las mujeres elijamos, y no hablo sólo de las decisiones sobre nuestro cuerpo. En este texto se exploran los niveles en los que se sigue presentando este discurso de odio hacia el aborto: lo mismo en los medios de comunicación y la opinión pública, que en lo legal, institucional, comunitario y hasta individual.

Asimismo, el artículo “Lactancia materna: rompiendo las barreras”, se ahonda en las ventajas de la lactancia, tanto para el bebé como para la madre. Y, con fundamentos científicos sólidos, se le promueve, ya que, con muy pocas excepciones, es conveniente para ambas partes, a corto y largo plazo. Por mencionar algunos, disminuye el riesgo materno de cáncer de mama, de sangrado posterior al parto y mejora el vínculo emocional entre la madre y el hijo. En el caso del bebé, le ayuda en su desarrollo emocional y social, al tiempo que promueve el crecimiento de bacterias benéficas del tracto digestivo y de la piel.

En el mismo sentido, en “La educación sexual escolar… ¿Funciona?”, las autoras comparan la impartición de la educación sexual en México y en otros países, y cómo la manera en la que se aborda en nuestro país se traduce en prácticas de riesgo, búsqueda de fuentes de información inadecuadas y la perpetuación de roles estereotipados de género y violencia contra la mujer.

Dichos textos nos recuerdan que es importante conocer y llevar a cabo acciones para reducir el estigma hacia el aborto, la lactancia y la educación sexual, ya que, aunque pareciera que sabemos más y estamos informados y abiertos al respecto, en nuestro contexto permanecen discursos obsoletos, infundados y discriminatorios que, como entes racionales y sociales, debemos erradicar, con la esperanza de una sociedad más incluyente, respetuosa y armónica.

Aún más, a pesar de todo nuestro conocimiento y tecnología, si hay algo que esta pandemia nos ha recordado, es que estamos inmersos en un mundo que se transforma y al que cambiamos a través de nuestras acciones; que dependemos del medio ambiente, de sus eventos estocásticos, como el surgimiento de nuevos virus. Es por ello que la capacidad de resiliencia que presentemos, la habilidad de adaptarnos ante nuevas condiciones, es clave.

De esta manera, en el texto tic: facilitadoras de la continuidad de actividades en la contingencia de covid-19 se explora y analiza el uso de las Tecnologías de Información y Comunicación (tic) en un centro de investigación. Este caso particular es representativo de lo que hemos vivido durante el año anterior, y que probablemente tengamos que integrar a nuestro nuevo paradigma educativo. En el mismo sentido, en este número, incluímos el ahead of print de “Los retos educativos durante la pandemia de covid-19: segunda encuesta a profesoras y profesores de la unam, con la esperanza de que sea útil a los docentes universitarios de las distintas entidades y niveles, para reflexionar sobre las problemáticas, necesidades de formación, herramientas digitales y prácticas de enseñanza que comparten y pueden mejorarse.

Como ya lo mencioné, el conocimiento es algo que buscamos incesantemente, por lo que se puede percibir como lejano e inasible. Pero hay que recordar que se soporta y está construido por muchas personas. Esto lo ha puesto en evidencia la pandemia que seguimos enfrentando. Así, el desarrollo tan veloz de vacunas no es sólo producto de la gran inversión monetaria en el tema, del trabajo a marchas forzadas de los científicos, o de la generosidad de los ciudadanos que aceptaron contribuir para investigar la efectividad de las vacunas en ensayos clínicos. Es también resultado de los descubrimientos y técnicas que se fueron desarrollando a través del tiempo, de los conocimientos previos y de su difusión y entendimiento. Por ello, todos deberíamos ser parte de la comunicación de los saberes, lo que es uno de los objetivos de esta Revista.

El saber no es ese ente abstracto, alejado de lo cotidiano. El saber está más cerca de lo que imaginamos y crece cuando lo comunicamos, cuando lo hacemos llegar a otros, que, con una perspectiva diferente, pueden aportar a él y a todos. En este sentido, como lo expresa nuestra querida editora Rosa María del Ángel Martínez en “Dejando una huella durante el servicio social”, la sección Caleidoscopio está dedicada a esos estudiantes que han contribuido con su servicio social a la misma existencia de esta Revista, a su papel en la difusión y comunicación social del conocimiento: de la ciencia, las humanidades y las artes. Sin ellos, no me queda ninguna duda, habría menos saberes al alcance de nuestra comunidad. Gracias por mejorar los artículos, por compartir su entusiasmo y energía con nosotras, y por enseñarnos tanto.

De igual manera, alcanzar el conocimiento depende mucho de que tengamos una predisposición y actitud para ello, y me refiero no sólo a las circunstancias adecuadas en lo social, económico y emocional. Hablo de que la búsqueda de nuevo conocimiento nos atraiga. Que veamos los saberes no como estáticos e inalcanzables, sino como una cuestión que provoca nuestra curiosidad y a la que podemos contribuir. Para ello, no hay mejor momento que la infancia. Entonces, una de las maneras de propiciar la búsqueda de conocimiento en los individuos se presenta en “Educación integral en la infancia: un aula innovadora, exitosa y feliz”, donde, a través de la descripción de esta estrategia, se busca el desarrollo de las capacidades cognitivas, comunicativas, afectivas, sociales y creativas de los estudiantes, con un enfoque holístico.

Sin duda el conocimiento nos brinda certezas, pero nos regala, en mayor medida, preguntas, indeterminaciones y conjeturas. Son éstas, también, la forma en la que vivimos la vida, decidiendo lo que consideramos mejor con la información que poseemos. Son las preguntas, indeterminaciones y conjeturas las que nos mueven en esta búsqueda del saber, las que nos hacen cuestionar lo que conocemos y el rumbo que llevamos. Sin ellas no habría cambios de paradigmas, ni la cantidad y diversidad de los conocimientos y sus aplicaciones. Asimismo, sin las preguntas, indeterminaciones y conjeturas no podríamos cuestionarnos si estamos haciendo lo mejor que podemos como seres humanos, si lo que aprendemos es integrado para alcanzar una mejor sociedad.

La búsqueda del conocimiento es siempre abierta, mejorable, transformable. Y es algo a lo que todos podemos —y debemos— contribuir, ya sea ejerciendo nuestra profesión, fomentando los cambios de paradigmas sociales que se traduzcan en la construcción de comunidades más incluyentes y tolerantes, y cuestionándonos aquellos prejuicios que a veces, sin saberlo ni quererlo, también cargamos. Porque al igual que el conocimiento, somos seres siempre cambiantes y perfectibles.



Vol. 22, núm. 4 julio-agosto 2021

El enemigo de mi enemigo es… Un virus que ataca a las bacterias: los bacteriófagos

María Anel Fuentes Valencia, Adriana Carolina Gil Correa, Carlos Antonio Martínez Palacios, Víctor Manuel Baizabal Aguirre y Juan José Valdez Alarcón Cita

Resumen

Los virus son partículas que infectan a todas las formas de vida. Los virus bacteriófagos, que infectan bacterias, fueron descubiertos antes que los antibióticos. A pesar de su tamaño pequeño, han contribuido al desarrollo científico desde hace décadas, como en el descubrimiento de numerosas enzimas con aplicaciones en la biología molecular.1 En este trabajo se analizarán aspectos generales de la biología de los virus bacteriófagos, su contribución a la salud y se presentarán algunos casos exitosos de la terapia antimicrobiana usando bacteriófagos en humanos y animales. Aunque la terapia con bacteriófagos no cuenta con autorización para su uso global, ya existen formulaciones comerciales de bacteriófagos para la industria alimentaria. Se describirá el arma principal de los bacteriófagos, la endolisina, enzima que “revienta” a las bacterias. Las endolisinas se consideran una alternativa más segura que los bacteriófagos, al carecer de material genético. Los bacteriófagos y las endolisinas tienen aplicaciones revolucionarias en la medicina, como vehículos de transporte de moléculas y generación de vacunas, de fantasmas bacterianos, o en la detección diagnóstica de bacterias patógenas.


Palabras clave: terapia de bacteriófagos, endolisinas, enzibióticos, partículas tipo virus (vlp), fantasmas bacterianos.

The enemy of my enemy is… A virus that attacks bacteria: bacteriophages

Abstract

Virus particles infect all life forms. Bacteriophage viruses, the ones that infect bacteria, were discovered before antibiotics. Despite its small size, they have contributed to scientific development such as the discovery of many enzymes with applications in molecular biology. In this paper we describe general aspects of their biology and their contribution to health, along with successful cases of antimicrobial therapy using bacteriophages in humans and animals. Despite the fact that there are no commercial authorizations for its global use, there are commercial bacteriophage formulations for the food industry. We will describe the main weapon of bacteriophages, endolysin, an enzyme useful for lysing bacteria. Endolysins are considered safer than bacteriophages because they lack genetic material. Bacteriophages and endolysins have revolutionary applications in medicine, such as the viral-like particles, useful for small molecules delivery or vaccine design, in the generation of bacterial ghosts and in the diagnostic and detection of pathogenic bacteria.
Keywords: phage therapy, endolysin, viral like particles (vlp), bacterial ghosts.

Introducción

Al escuchar la palabra “virus” reaccionamos con temor debido a las experiencias recientes por la pandemia causada por el coronavirus sars-CoV-2. El significado de la palabra virus proviene del latín que significa veneno o ponzoña. Los virus infectan a los animales, plantas, hongos y a las bacterias. Los bacteriófagos, también llamados fagos, son un tipo de virus, y son partículas formadas por moléculas de ácido desoxirribonucleico (adn) o ácido ribonucleico (arn) y proteínas. Ellos infectan exclusivamente a las bacterias y son sus enemigos naturales. Los virus bacteriófagos son parásitos, que secuestran y utilizan los componentes de la célula para reproducirse (Salmond y Fineran, 2015).

Un descubrimiento “viral”

Los bacteriófagos fueron descubiertos, antes que los antibióticos, de manera independiente por Frederick Twort en 1915 y Félix d’Hérelle en 1917 (Salmond y Fineran, 2015). Su descubrimiento se considera uno de los más importantes en la historia moderna de la investigación biomédica, ya que fueron considerados como una herramienta muy prometedora contra las infecciones bacterianas. Félix d’Hérelle, en 1919, en París, fue el primer científico en administrar bacteriófagos por vía oral a niños con diarrea ocasionada por una infección con la bacteria Shigella dysenteriae. Los niños se recuperaron en 24 horas (Sulakvelidze y Kutter, 2005). No obstante, con el descubrimiento de la penicilina, el primer antibiótico, por Sir Alexander Fleming en 1928, los bacteriófagos quedaron relegados a un segundo plano.

Conociendo al enemigo íntimo de las bacterias

Los bacteriófagos, como todos los virus, están compuestos por una cubierta protectora de proteína llamada cápside, que asemeja a una cápsula de alunizaje, como la que llevó al hombre a la luna (ver figura 1). Dentro contiene material genético, que puede ser ácido desoxirribonucléico (adn) o ácido ribonucleico (arn). Los bacteriófagos se clasifican con base en la forma de su cápside (si tienen cola, si la cápside presenta formas variadas, o si es filamentosa o poliédrica; ver figura 1).



Figura 1. Familias de bacteriófagos y sus representantes. A. Clasificación de bacteriófagos de acuerdo con la forma de su cápsula y al tipo de ácido nucléico (adn o arn). B. Bacteriófago próximo a unirse a la superficie de una célula. C. Módulo lunar sobre la superficie de la luna. El “cuello” del bacteriófagos es un canal por el que el adn o arn se inyecta en la bacteria, semejante al túnel de salida del módulo lunar por donde desembarcan los astronautas.

Los bacteriófagos miden entre 50 y 200 nm (1 nm = 1 mil millonésima parte de un metro) (Richter et al., 2018) y sólo pueden ser visibles con un microscopio electrónico. Son las entidades biológicas más abundantes en la Tierra, superando 10 veces el número de bacterias en algunos ecosistemas (Dion et al., 2020). Los bacteriófagos son abundantes en el medio acuático, suelo, plantas y en los animales. En los humanos, los fagos se pueden encontrar en la piel, la boca, el estómago y el intestino, donde se han encontrado hasta 100 millones de partículas virales por ml de filtrados fecales (Hoyles et al., 2014).

¿Cómo infectan los bacteriófagos a las bacterias?

Los bacteriófagos reconocen de manera muy específica a las bacterias que invadirán. Para ello, se adhieren a la superficie bacteriana e inyectan su material genético dentro de la célula. Si el material genético del fago se combina con el material genético de la bacteria anfitriona, se le llama profago; en este caso, ambos se pueden replicar simultáneamente y la bacteria no es destruida, lo que se conoce como el ciclo de vida lisogénico del fago (Melo et al., 2020). En el caso de los fagos líticos, en cambio, al inyectar su material genético, éste es leído e interpretado por la bacteria para producir más moléculas de adn o arn del fago, proteínas de la cápside y una enzima llamada endolisina, que, en cuestión de minutos a horas, destruye a sus anfitriones, para liberar miles de bacteriófagos (ver figura 2). Este ciclo lítico se repite hasta que se agotan las bacterias por secuestrar. Los fagos líticos se consideran idóneos para el control de enfermedades de origen bacteriano (Melo et al., 2020).



Figura 2. Ciclos de vida de los bacteriófagos.

Los bacteriófagos y el avance de la biología molecular

El estudio de los bacteriófagos contribuyó al conocimiento de la biología molecular. Hershey y Chase, en 1952, al estudiar un bacteriófago, demostraron que los genes estaban hechos de ácidos nucleicos. De la interacción entre bacteria y bacteriófago se descubrieron varias enzimas. Entre ellas las enzimas de restricción, que las bacterias utilizan como “tijeras moleculares”, para cortar el adn del virus infectante; la ligasa, que actúa como “pegamento molecular”. De igual manera, el material genético de un bacteriófago se ha usado como vector molecular.2

Dichas herramientas tienen diferentes aplicaciones en la biología molecular, la ingeniería genética3 y la biotecnología. Por ejemplo, la arn polimerasa y la ribonucleasa H de bacteriófagos de Escherichia coli se usan como herramientas en biología sintética,4 y en un futuro podrían utilizarse para nanodispositivos y en la construcción de los genomas para células artificiales que realicen funciones útiles para la humanidad (Kim y Winfre, 2011). Asimismo, una de las herramientas de edición genética más recientes y versátiles, crispr-Cas,5 deriva de un mecanismo de defensa bacteriano contra los bacteriófagos, y permite la ingeniería genética in vivo en bacterias y células más complejas, como las de mamíferos o plantas (Mei et al., 2016).

Terapias con bacteriófagos

Un proverbio árabe dice: “el enemigo de mi enemigo es mi amigo”. Por ello, como los bacteriófagos destruyen a las bacterias que nos atacan y enferman, entonces, son nuestros aliados. En este sentido, el interés en el uso de los bacteriófagos para el control de enfermedades es cada vez mayor, principalmente debido al incremento de las bacterias resistentes a varios tipos de antibióticos, las llamadas superbacterias, cada vez más difíciles de combatir. Las superbacterias son un problema de salud pública urgente, ya que cada vez hay menos antibióticos nuevos y efectivos. Los Centros para el Control y Prevención de Enfermedades estiman 2.8 millones de infecciones por superbacterias en los Estados Unidos, que cada año causan más de 35,000 muertes (Centers for Disease Control and Prevention [cdc], 2020). También la Organización Mundial de la Salud (oms) alerta de la importancia en el incremento de las superbacterias, por lo que actualmente establece políticas y estrategias de control bajo el enfoque integral de “Una Salud”, que considera la salud humana, animal, vegetal y el ambiente (oms, 2020).

La terapia de bacteriófagos, que utiliza fagos para tratar las infecciones bacterianas, existe desde el siglo pasado y presenta numerosas ventajas en comparación con la terapia con antibióticos (Melo et al., 2020):

  1. Los bacteriófagos son abundantes en la naturaleza y de bajo costo: un solo bacteriófago puede aniquilar a un número elevado de bacterias.
  2. Los bacteriófagos líticos destruyen por completo a las bacterias, a diferencia de los antibióticos bacteriostáticos,6 que dificultan la reproducción de las bacterias, pero no las eliminan.
  3. Los bacteriófagos son muy específicos. Infectan únicamente a su bacteria hospedera, dejando intactas a otras bacterias benéficas. Además, no infectan a los humanos, animales o plantas.
  4. Es una terapia activa,7 una sola dosis es suficiente para el control de la infección bacteriana. Mientras existan bacterias, los bacteriófagos continuarán replicándose; una vez eliminadas, también dejarán de multiplicarse.
  5. Los bacteriófagos pueden cambiar (mutar) para evadir las defensas de las bacterias. Es posible usar mezclas (cócteles) de bacteriófagos para evitar el desarrollo de resistencia bacteriana.
  6. Los bacteriófagos no causan alergias como lo hacen algunos antibióticos.

Bacteriófagos al rescate de la salud humana y animal

Durante 1950 en Europa, África y en los Estados Unidos, se utilizaron preparaciones preventivas y terapéuticas de bacteriófagos que fueron desplazadas por los antibióticos en el mercado. Los bacteriófagos terapéuticos se administran en los humanos a través diversas rutas: por aerosol, intravenosa, oral, rectal y tópica, para el tratamiento de diversas infecciones bacterianas (Melo et al., 2020).

Los bacteriófagos son muy seguros, dado que hemos estado expuestos a ellos desde que estuvimos en el útero y hemos desarrollado tolerancia a su presencia. Existen ensayos clínicos y casos de éxito de la fagoterapia, sobre todo en Europa (Sulakvelidze y Kutter, 2005). A pesar de su éxito, ningún bacteriófago cuenta con aprobación para su uso terapéutico en humanos, aunque algunos productos terapéuticos con base en bacteriófagos cuentan con autorización por la Unión Europea para aplicarse en las granjas avícolas. A la fecha sólo algunas formulaciones de bacteriófagos en la industria alimentaria humana se autorizan por la Agencia Federal de Medicamentos y Alimentos (fda) de los Estados Unidos, quien los considera como “generalmente seguros”.

Existen casos, científicamente documentados, de terapia con bacteriófagos exitosa en los humanos. Thomas Patterson, un paciente diabético con pancreatitis infecciosa por Acinetobacter baumannii con multirresistencia a los antibióticos, recibió una terapia personalizada, un cóctel de nueve bacteriófagos con potencial destructor, administrado en las cavidades de los abscesos. Después de dicho tratamiento el paciente recuperó su salud, sin presentar efectos negativos a causa de la terapia con bacteriófagos (Schooley et al., 2017). Otro caso es el de Isabelle Camell-Holdaway, una adolescente de 15 años con fibrosis quística, una enfermedad genética que afecta la función pulmonar. Al mes de someterse a un trasplante de pulmones presentó una infección en todo el cuerpo con llagas ocasionadas por Mycobacterium abscessus. A pesar de que los médicos estimaron una sobrevivencia nula, la administración de un cóctel de bacteriófagos mejoró notablemente la salud de la joven, incluso las heridas abiertas lograron cerrarse (Dedrick et al., 2019). Asimismo, los bacteriófagos rescatan la salud de animales terrestres y acuáticos. Algunos casos de éxito se observan en la tabla 1.

Uso Organismo/ producto alimenticio Bacteriófago Patógeno Aplicación resultados Cita
Medicina veterinaria Perros Cóctel de 6 bacteriófagos Pseudomonas aeruginosa Topica.
Redujo las bacterias a las 48 h.
Primer informe de terapia con bacteriófagos.*
Hawkins et al., 2010
Medicina veterinaria Truchas arco iris PAS-1 Aeromonas salmonicida Inyección intramuscular.
Incrementó la superviviencia de los peces.
Ausencia de lesiones externas.
Kim et al., 2013
Diagnóstico clínico Humano φA1122 y
L-413C
Yersinia pestis La detección molecular de los bacteriófagos permitió una identificación bacteriana rápida. Sergueev et al., 2015
Inocuidad alimentaria Carne cruda y cocinada Cóctel de 3 bacteriófagos para cada bacteria Listeria monocytogenes y Escherichia coli O157:H7 Bioadsorbentes en membranas de celulosa en carne contaminada
Biocontrol eficiente bacteriano
Anany et al., 2011

Tabla 1. Ejemplos de aplicaciones de los bacteriófagos en la salud humana y animal.
*Bajo la legislación Europea

Las armas virales: las endolisinas y sus aplicaciones

Los bacteriófagos producen holinas (proteínas formadoras de poro), que permiten la salida de las endolisinas, enzimas que degradan la pared celular bacteriana (Gondil et al., 2020; ver figura 2). Las endolisinas se consideran enzibióticos (enzimas con actividad antibiótica) con potencial para el tratamiento de infecciones bacterianas multirresistentes. Ya que son de naturaleza proteica, las endolisinas se consideran aún más seguras que los bacteriófagos al estar libres de material genético (Gondil et al., 2020). Hasta el momento no se ha identificado desarrollo de resistencia bacteriana a ellas, debido a que las moléculas que degradan poseen estructuras que prácticamente no cambian. Las endolisinas tienen un espectro de acción más amplio que los bacteriófagos, lo cual las hace más atractivas como fármacos. Existen investigaciones sobre la actividad antimicrobiana de las endolisinas con diversas aplicaciones (ver tabla 2), pero aún no existen fármacos comerciales basados en endolisinas.

Uso Organismo / producto alimenticio Endolisina Patógeno Aplicación y resultados Cita
Medicina humana y veterinaria Células pulmonares humanas y ratones LysSS (endolisina de bacteriófago vs Salmonella enterica) Acinetobacter baumannii, P. aeruginosa, Staphylococcus aureus, enterobacterias In vitro resultó ser un biocontrol efectivo para bacterias Gram- y Gram+.
Ausencia de efectos citotóxicos en las células humanas
Inyección intraperitoneal protegió a ratones con infección por A. baumanii
Kim et al., 2020
Agricultura Planta de papa Lisozima del Bacteriófago T4 Erwinia carotovora Tecnología genética
Las plantas con el gen de la lisozima fueron resistentes a la infección bacteriana.
Düring et al., 1993
Medicina veterinaria Mamíferos SAL200 S. aureus Inyección intravenosa en distintos modelos animales.
Reducción de las bacterias en la sangre.
Incrementó significativamente la sobrevivencia de los animales.
Jun et al., 2013; 2016
Inocuidad alimentaria Leche de soya LysZ5 Listeria monocytogenes Directa en leche contaminada.
Reducción de la bacteria (3 h, 4°C)
Zhang et al., 2012

Tabla 2. Ejemplos de aplicaciones de las endolisinas.

Las endolisinas son útiles para el control de las biopelículas (acumulaciones de bacterias que secretan moléculas que las protegen y que dificultan la efectividad de los antibióticos; Love et al., 2018). Las endolisinas también se emplean para la desinfección de equipo hospitalario, y la elaboración y empaque de alimentos (Barrera et al., 2015). Dichas proteínas tienen un potencial importante en la industria alimentaria como aditivos antimicrobianos o de ser producidas por bacterias ácido lácticas modificadas, en procesos de fermentación. La endolisinas también tienen potencial de aplicación para el control de infecciones bacterianas en diversos sectores productivos, tal como el agropecuario y el acuícola (Zduńczyk y Janowski, 2020; Zermeño et al., 2018).

Los bacteriófagos también son útiles de otras maneras

Utilizando solamente las proteínas de la cápside del bacteriófago se construyen las partículas tipo virus (vlps, por sus siglas del inglés Viral Like Particles), las cuales sirven para el diseño de vacunas contra infecciones virales. Las vlps carecen de material genético para producir una infección, por lo que se consideran una estrategia segura para la inducción de anticuerpos neutralizantes, por ejemplo, contra la influenza. En esta vacuna, modificaron un bacteriófago filamentoso de E. coli y le insertaron una proteína del virus de influenza. El bacteriófago generó respuesta inmunológica protectora, en modelos animales, contra una dosis letal del virus de la influenza (Deng et al., 2015). De una manera similar, las vlps derivadas de los bacteriófagos de cola se emplean para la generación de vacunas para enfermedades no infecciosas (cánceres de mama, pulmón, hígado, próstata y de piel).

Las endolisinas se utilizan para generar los llamados fantasmas bacterianos (Bacterial Ghosts o bgs, en inglés), células bacterianas que perdieron su contenido celular, quedando solamente la envoltura celular. La endolisina E del bacteriófago PhiX174 ocasiona la lisis celular de la bacteria en la que se produce, y una nucleasa procedente de Staphylococcus aureus (snuc) degrada el adn para garantizar que los bgs están libres de ácidos nucleicos. Los bgs se utilizan como sustitutos de las vacunas atenuadas por calor o inactivadas por tratamientos químicos; a diferencia de éstos, conservan la estructura tridimensional de sus proteínas lo que mejora su eficiencia como vacunas (Barrera et al., 2015). Con los bgs se han inmunizado a distintos modelos animales contra las bacterias: Vibrio cholerae, Klebsiella pneumoniae y Salmonella enterica. Los bgs se pueden emplear como micro-biorreactores para realizar reacciones enzimáticas, como transportadores de plaguicidas contra patógenos de plantas y en la entrega de medicamentos en la terapia antitumoral. Lo anterior permite una mayor especificidad hacia las células tumorales y una reducción en la cantidad de medicamento por aplicación (Hajam et al., 2017). Los bacteriófagos también se utilizan para el envío de genes reporteros a las bacterias y así generar un sistema para la detección de bacterias como E. coli, Listeria monocytogenes, S. Typhimurium, Yersinia pestis y Bacillus anthracis (Bardy et al., 2016).

Así, los bacteriófagos y las endolisinas son útiles para la detección rápida de las bacterias (Bai et al., 2016), y, por su especificidad para unirse a ellas, se pueden utilizar como biosondas, que presentan ventajas en comparación con los anticuerpos: replicación en gran número a un bajo costo y estabilidad ante condiciones desfavorables –variaciones en el pH, temperatura y salinidad (Bardy et al., 2016)–. Para la detección bacteriana, se utilizan también los dominios de unión de la pared celular bacteriana (cbd) de las endolisinas, debido a su unión específica con el huésped. Los cbd podrían ser candidatos potenciales para reemplazar los anticuerpos en la detección rápida y la determinación de la concentración de patógenos, ya que presentan una especificidad mayor y son más económicos (Bai et al., 2016).

Conclusiones

En nuestra historia, en un planeta lleno de virus, dentro de los cuales los bacteriófagos predominan y nos continuarán sorprendiendo, su estudio ha representado grandes avances para el desarrollo científico, particularmente para la biotecnología molecular y la biomedicina. La investigación de los bacteriófagos líticos nos permitirá emplearlos como nuestros aliados ante la guerra microbiana y en la mejora de los sectores productivos. En esta época post-antibiótica, el futuro de la terapia con bacteriófagos y sus endolisinas parece ser prometedor y versátil. No obstante, aún se requiere de investigación clínica que consolide finalmente la terapia con bacteriófagos. Además, éstos se consideran una tecnología verde, amigable con el medio ambiente y presentan otras cualidades que aún nos queda por explotar para el rescate de la salud humana, animal y vegetal.

Agradecimientos

El trabajo de bacteriófagos recibe apoyo del proyecto senasica “Desarrollo de una estrategia alternativa al uso de antibióticos para el biocontrol de cepas prevalentes de Aeromonas spp. en granjas trutícolas de Michoacán”, del Laboratorio Nacional de Nutrigenómica y Microbiómica Digestiva Animal y de la Coordinación de la Investigación Científica de la Universidad Michoacana de San Nicolás de Hidalgo. Los autores agradecen a la Lic. en Diseño Gráfico Andrea Valdez Chávez por su colaboración en la elaboración de la Figura 1.

Referencias

  • Anany, H., Chen, W., Pelton, R. y Griffiths, M. W. (2011). Biocontrol of Listeria monocytogenes and Escherichia coli O157: H7 in meat by using phages immobilized on modified cellulose membranes. Applied and environmental microbiology, 77(18), 6379-6387. https://doi.org/10.1128/AEM.05493-11.
  • Bai, J., Kim, Y. T., Ryu, S. y Lee, J. H. (2016). Biocontrol and rapid detection of food-borne pathogens using bacteriophages and endolysins. Frontiers in microbiology, 7, 474. https://doi.org/10.3389/fmicb.2016.00474.
  • Bárdy, P., Pantůček, R., Benešík, M. y Doškař, J. (2016). Genetically modified bacteriophages in applied microbiology. Journal of Applied Microbiology, 121(3), 618-33. https://doi.org/10.1111/jam.13207.
  • Barrera, R. C.I., Cajero, J.M., Oviedo, B. J., Nuñez A. R. E., Kawabe, K. L. y Alarcón, V. J. J. (2015). Advances in the use of endolysins: general remarks, structure, applications, genetic modifications and perspectives. En A. Mendez-Vilas (Ed), The Battle Against Microbial Pathogens: Basic Science, Technological Advances and Educational Programs (pp. 259-268). Formatex Research Center.
  • Centers for Disease Control and Prevention (cdc). (2020, 13 de marzo). Antibiotic / Antimicrobial Resistance (ar/amr). About Antibiotic Resistance. https://www.cdc.gov/drugresistance/about.html.
  • Chauthaiwale, V. M., Therwath, A. y Deshpande, V. V. (1992). Bacteriophage lambda as a cloning vector. Microbiology and Molecular Biology Reviews, 56(4), 577-591.
  • Dedrick, R. M., Guerrero,B. C. A., Garlena, R. A., Russell, D. A., Ford, K., Harris, K., Gilmour K. C., Soothill J., Jacobs S. D., Schooley R. T., Hatfull, G. F. y Spencer, H. (2019). Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nature medicine, 25(5), 730-733. https://doi.org/10.1038/s41591-019-0437-z.
  • Deng, L., Ibañez, L. I., Van den Bossche, V., Roose, K., Youssef, S. A., De Bruin, A., Fiers W. y Saelens, X. (2015). Protection against influenza A virus challenge with M2e-displaying filamentous Escherichia coli phages. PLoS One, 10(5), e0126650. https://doi.org/10.1371/journal.pone.0126650.
  • Dion, M. B., Oechslin, F. y Moineau, S. (2020). Phage diversity, genomics and phylogeny. Nature Reviews Microbiology, 18, 125–138. https://doi.org/10.1038/s41579-019-0311-5.
  • Düring, K., Porsch, P., Fladung, M. y Lörz, H. (1993). Transgenic potato plants resistant to the phytopathogenic bacterium Erwinia carotovora. The Plant Journal, 3(4), 587-598. https://doi.org/10.1046/j.1365-313X.1993.03040587.x.
  • Gondil, V. S., Harjai, K. y Chhibber, S. (2020). Endolysins as emerging alternative therapeutic agents to counter drug-resistant infections. International journal of antimicrobial agents, 55(2), 105844. https://doi.org/10.1016/j.ijantimicag.2019.11.001.
  • Hajam, I. A., Dar, P. A., Won, G. y Lee, J. H. (2017). Bacterial ghosts as adjuvants: mechanisms and potential. Veterinary Research, 48, 37. https://doi.org/10.1186/s13567-017-0442-5.
  • Hawkins, C., Harper, D., Burch, D., Änggård, E. y Soothill, J. (2010). Topical treatment of Pseudomonas aeruginosa otitis of dogs with a bacteriophage mixture: a before/after clinical trial. Veterinary microbiology, 146(3-4), 309-313. https://doi.org/10.1016/j.vetmic.2010.05.014.
  • Hoyles, L., McCartney, A. L., Neve, H., Gibson, G. R., Sanderson, J. D., Heller, K. J. y Van Sinderen, D. (2014). Characterization of virus-like particles associated with the human faecal and caecal microbiota. Research in microbiology, 165(10), 803-812. https://doi.org/10.1016/j.resmic.2014.10.006.
  • Jackson, D. A., Symons, R. H. y Berg, P. (1972). Biochemical method for inserting new genetic information into dna of Simian Virus 40: circular SV40 dna molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proceedings of the National Academy of Sciences, 69(10), 2904-2909. https://doi.org/10.1073/pnas.69.10.2904.
  • Jun, S. Y., Jung, G. M., Yoon, S. J., Oh, M. D., Choi, Y. J., Lee, W. J. y Kang, S. H. (2013). Antibacterial properties of a pre-formulated recombinant phage endolysin, sal-1. International journal of antimicrobial agents, 41(2), 156-161. https://doi.org/10.1016/j.ijantimicag.2012.10.011.
  • Jun, S. Y., Jung, G. M., Yoon, S. J., Youm, S. Y., Han, H. Y., Lee, J. H. y Kang, S. H. (2016). Pharmacokinetics of the phage endolysin-based candidate drug sal 200 in monkeys and its appropriate intravenous dosing period. Clinical and Experimental Pharmacology and Physiology, 43(10), 1013-1016. https://doi.org/10.1111/1440-1681.12613.
  • Kim, J. H., Choresca, C. H., Shin, S. P., Han, J. E., Jun, J. W. y Park, S. C. (2013). Biological Control of Aeromonas salmonicida subsp. salmonicida Infection in Rainbow Trout (Oncorhynchus mykiss) Using Aeromonas Phage pas-1. Transboundary and emerging diseases, 62(1), 81-86. https://doi.org/10.1111/tbed.12088.
  • Kim, J. y Winfree, E. (2011). Synthetic in vitro transcriptional oscillators. Molecular systems biology, 7, 465. https://doi.org/10.1038/msb.2010.119.
  • Kim, S., Lee, D. W., Jin, J. S. y Kim, J. (2020). Antimicrobial activity of LysSS, a novel phage endolysin, against Acinetobacter baumannii and Pseudomonas aeruginosa. Journal of Global Antimicrobial Resistance, 22, 32-39. https://doi.org/10.1016/j.jgar.2020.01.005.
  • Love, M. J., Bhandari, D., Dobson, R. C. y Billington, C. (2018). Potential for bacteriophage endolysins to supplement or replace antibiotics in food production and clinical care. Antibiotics, 7(1), 17. https://doi.org/10.3390/antibiotics7010017
  • Mei, Y., Wang, Y., Chen, H., Sun, Z. S. y Ju, X. D. (2016). Recent progress in crispr/Cas9 technology. Journal of Genetics and Genomics, 43(2), 63-75. https://doi.org/10.1016/j.jgg.2016.01.001.
  • Melo, L. D., Oliveira, H., Pires, D. P., Dabrowska, K. y Azeredo, J. (2020). Phage therapy efficacy: a review of the last 10 years of preclinical studies. Critical Reviews in Microbiology, 46(1), 78-99. https://doi.org/10.1080/1040841X.2020.1729695.
  • Organización Mundial de la Salud (oms). (2020, septiembre). El enfoque multisectorial de la oms “Una salud”. https://www.who.int/features/qa/one-health/es/.
  • Richter, L., Janczuk R., M., Niedziółka J.J., Paczesny J., Hołyst, R. (2018). Recent advances in bacteriophage-based methods for bacteria detection. Drug Discovery Today, 23(2), 448-455. https://doi.org/10.1016/j.drudis.2017.11.007.
  • Salmond, G. P. y Fineran, P. C. (2015). A century of the phage: past, present and future. Nature Reviews Microbiology, 13(12), 777-786. https://doi.org/10.1038/nrmicro3564.
  • Sergueev, K. V., He, Y., Borschel, R. H., Nikolich, M. P. y Filippov, A. A. (2010). Rapid and sensitive detection of Yersinia pestis using amplification of plague diagnostic bacteriophages monitored by real-time pcr. PLoS One, 5(6), e11337. https://doi.org/10.1371/journal.pone.0011337.
  • Schooley, R. T., Biswas, B., Gill, J. J., Hernández M. A., Lancaster, J., Lessor, L. y Segall, A. M. (2017). Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrobial agents and chemotherapy, 61(10), e00954-17. https://doi.org/10.1128/AAC.00954-17.
  • Sulakvelidze, A. y Kutter, E. (2004). Bacteriophage Therapy in Humans. En E. Kutter y A. Sulakvelidze (Eds.), Bacteriophages: biology and applications. crc-Press. https://doi.org/10.1201/9780203491751.ch14.
  • Zermeño-Cervantes, L. A., Makarov, R., Lomelí-Ortega, C. O., Martínez-Díaz, S. F. y Cardona-Félix, C. S. (2018). Recombinant Lys vpms 1 as an endolysin with broad lytic activity against Vibrio parahaemolyticus strains associated to acute hepatopancreatic necrosis disease. Aquaculture Research, 49(4), 1723-1726. https://doi.org/10.1111/are.13577.
  • Zduńczyk, S. y Janowski, T. (2020). Bacteriophages and associated endolysins in therapy and prevention of mastitis and metritis in cows: Current knowledge. Animal Reproduction Science, 218, 106504. https://doi.org/10.1016/j.anireprosci.2020.106504.
  • Zhang, H., Bao, H., Billington, C., Hudson, J. A. y Wang, R. (2012). Isolation and lytic activity of the Listeria bacteriophage endolysin LysZ5 against Listeria monocytogenes in soya milk. Food microbiology, 31(1), 133-136. https://doi.org/10.1016/j.fm.2012.01.005.


Recepción: 27/09/2020. Aprobación: 10/03/2021.

Vol. 22, núm. 4 julio-agosto 2021

Las extraordinarias formas de vida de los dinoflagelados del Pacífico mexicano

Sonia Jeanetthe Delgado del Villar, Rosalba Alonso Rodríguez* y Laura Rebeca Jimenez-Gutierrez Cita

Resumen

Conforme se descubren nuevas especies, la humanidad toma conciencia de la riqueza y diversidad de la vida en la naturaleza. Particularmente en los ecosistemas marinos, nos damos cuenta que desconocemos todos los beneficios ecológicos y económicos que brinda el fitoplancton. En este documento mostraremos las extraordinarias formas de vida de los dinoflagelados marinos, quienes conforman el segundo grupo más abundante después de las diatomeas dentro del fitoplancton marino, el cual contribuye a la producción de oxígeno y forma parte de la base de las cadenas tróficas de todos los sistemas acuáticos. Los dinoflagelados sobresalen por poseer una gran variedad de formas, tamaños y adaptaciones para sobrevivir en condiciones adversas. A partir de ellos, se obtienen diversos productos útiles para la sociedad como suplementos alimenticios y medicamentos. Sin embargo, algunas especies producen toxinas, también llamadas ficotoxinas, que provocan daños a los ecosistemas acuáticos y representan riesgos a la salud humana. Actualmente, se conoce sólo una pequeña parte de la diversidad de los dinoflagelados, su potencial en la producción de compuestos y su uso en beneficio de la sociedad. Aún estamos muy lejos de conocer todo lo que este maravilloso mundo microscópico tiene por ofrecer a la humanidad.
Palabras clave: biodiversidad, ficotoxinas, fitoplancton, microalgas peligrosas, productores primarios.

The extraordinary life forms of the dinoflagellate from the Mexican Pacific

Abstract

As new species are discovered, humanity becomes aware of the richness and diversity of nature. In marine ecosystems, particularly, we do not know entirely the ecological and economic benefits that phytoplankton provides. In this document, we will show the extraordinary life forms of marine dinoflagellates, who make up the second most abundant group after diatoms within marine phytoplankton, which contributes to the oxygen production and that are part of the basis of trophic chains of all aquatic systems. Dinoflagellates stand out for having a great variety of shapes, sizes and adaptations to survive in adverse conditions. From them, various useful products for society are obtained, such as food supplements and drugs. However, some species produce toxins, also called phycotoxins, which cause damage to aquatic ecosystems and represent risks to human health. Currently, we only know a small part of the diversity of dinoflagellates, its potential in the production of compounds and its use for the benefit of society. We are still a long way from knowing all that this wonderful microscopic world has to offer to humanity.
Keywords: biodiversity, phycotoxins, phytoplankton, harmful microalgae, primary producers.

El fitoplancton y los dinoflagelados

El fitoplancton es el conjunto de microrganismos unicelulares de origen vegetal que flota en los mares, ríos, lagos y lagunas. Estos organismos son fotoautótrofos, pues poseen pigmentos fotosintéticos y realizan la fotosíntesis en los cloroplastos, producen glucosa y materia orgánica a partir del dióxido de carbono, materia inorgánica (nutrientes), agua y luz solar, y como producto de la reacción liberan oxígeno. Estos organismos constituyen la base de la cadena alimenticia, lo que conlleva al inicio de la transferencia de la energía de una especie a otra, hasta llegar a los depredadores de gran tamaño. Por lo tanto, el fitoplancton es indispensable para la vida en la Tierra.

El fitoplancton contribuye a la biodiversidad del planeta y se clasifica en varios grupos según sus características. En orden de abundancia en los ecosistemas marinos se encuentran las diatomeas, dinoflagelados, silicoflagelados, cocolitofóridos, cianobacterias, entre otros grupos. Cada especie requiere condiciones ambientales específicas para su crecimiento, como temperatura, luz, nutrientes, salinidad, entre otras, lo que determina su distribución geográfica. En condiciones específicas, las poblaciones del fitoplancton pueden alcanzar tal abundancia que son capaces de cambiar el color del agua, a lo cual se le conoce como florecimiento algal, conocido también como marea roja.

Aproximadamente 70% de estos florecimientos algales son capaces de promover la productividad acuática marina (Cortés-Altamirano et al., 2019). El resto de los florecimientos algales puede provocar diversos problemas en el ecosistema, como el elevado consumo de oxígeno disuelto en ausencia de luz o cuando finaliza el florecimiento, sumado, en algunos casos, a la producción de ficotoxinas, espuma y sustancias viscosas. El 52% de las especies formadoras de estos eventos conocidos como florecimientos algales nocivos (fan) pertenecen a los dinoflagelados marinos (ioc-unesco, 2009), que son responsables de 46% del número total de FAN registrados a nivel mundial desde 1770 a la fecha (haedat, 2021).

Los dinoflagelados son un grupo de microalgas unicelulares. Su nombre proviene de la palabra griega dino que significa giro y del latín flagellum que significa flagelo o látigo. Este grupo existe desde hace 1600 millones de años y durante ese tiempo ha evolucionado y sobrevivido a las adversidades y a las grandes extinciones (Meng et al., 2005). Tiene la capacidad de producir toxinas, que en concentraciones altas puede provocar mortandad de organismos e intoxicaciones en los ecosistemas acuáticos y en humanos por el consumo de mariscos contaminados; por otra parte, estudios científicos han logrado descubrir aplicaciones médicas para dichas toxinas (Assunção, 2021).

El objetivo de este artículo es difundir la gran diversidad de formas, estructuras y adaptaciones de las especies de dinoflagelados que habitan en el océano Pacífico mexicano (opm), con la finalidad de generar interés en su estudio. Esto podría abrir nuevos campos de conocimiento que nos permitan entender su biología, cultivo, formación de fan, la producción y aplicación de toxinas en beneficio de la sociedad.

¿Quiénes son los dinoflagelados?

La mayor parte de los dinoflagelados habitan en la superficie del océano. Algunas especies viven solitarias, mientras que otras forman colonias (figura 1, A, B). Un menor número de especies vive en simbiosis, con otros organismos como los corales, diatomeas o microzooplancton, ya sea junto a ellos o dentro de ellos (Gómez, 2012).



Figura 1. Diversidad de dinoflagelados planctónicos. A) Cadena de Gymnodinium catenatum. B) Pseudocolonia de Polykrikos harmannii. C) Heterocapsa sp. D) Ceratium tripos. E) Noctiluca scintillans. F) Protoperidinium sp. G) Tripos furca. H) Akashiwo sanguinea. I) Quiste temporal de Phyrophacus sp. J) Protoperidinium sp. K) Noctiluca scintillans ingiriendo cadenas de G. catenatum. L) Prorocentrum concavum. ca= cuerpo de acumulación, cdi=cadena de dinoflagelado ingerida, ef= espina y flagelo, fl=flagelo longitudinal, ft= flagelo transversal, n= núcleo, p=pedúnculo. La línea amarilla corresponde a la escala de 50 µm.
Elaboración propia.

Los dinoflagelados tienen una gran diversidad de formas y tamaños, pueden medir entre 5 y 2000 µm (1 µm es 1000 veces menor que un milímetro, estas especies se observan a través de un microscopio; ver figura 1, C, D ,E). Algunas de estas variaciones corresponden a adaptaciones ambientales o a la etapa de su ciclo de vida (Gómez, 2012). Sin embargo, una de las características principales que comparten todos los dinoflagelados son sus dos flagelos (prolongación móvil) que facilitan su movimiento (ver figura 1F y figura 2; De Vargas et al., 2015).



Figura 2. Características morfológicas de algunos géneros de dinoflagelados. A) Protoperidinium. B) Gymnodinium. C) Scrippsiella. D) Prorocentrum. fl= flagelo longitudinal, ft= flagelo transversal, n= núcleo, s= sulcus, st=sutura.
Elaboración propia.

La otra razón del nombre de dinoflagelado es que su material genético permanece condensado en un núcleo grande denominado dinocarion. La mayoría de las especies de dinoflagelados poseen una pared celular delgada y son llamados atecados o desnudos, sólo en una cuarta parte de ellos esta pared presenta un aspecto rígido y se conocen como tecados. Algunas especies exhiben extensiones denominadas cuernos, también, pueden tener prolongaciones como son espinas, bordes, rebordes, alas, aletas o expansiones desiguales, etcétera (ver figura 1G; Hoppenrath et al., 2013).

Los dinoflagelados pertenecen a los primeros grupos de los eucariotas. Están más relacionados con los humanos que con las bacterias, aunque con estas últimas comparten algunas características, ya que se pueden reproducir tanto asexual como sexualmente, lo cual les brinda una ventaja evolutiva, debido a la combinación de genes, y, por ende, una mejor adaptación (Figueroa y Bravo, 2005).

Las condiciones ambientales cambiantes y poco favorables han permitido que cerca de 500 especies de dinoflagelados tengan la capacidad de sobrevivir en condiciones adversas, al transformarse de una célula móvil a una célula inmóvil en reposo denominada quiste, cuya forma puede corresponder o no a la especie que lo originó. Además, en su interior puede observarse un cuerpo de acumulación rojo que es un indicador de que tiene vida (ver figura 1, H, I).

Este quiste puede regresar a su forma móvil al restablecerse las condiciones ambientales y cumplir con un período de reposo programado por su reloj biológico (mecanismo molecular interno que le permite coordinar su funcionamiento, utilizando la información del medio ambiente). Se conoce sobre la existencia de quistes de dinoflagelados en estado de latencia que han subsistido enterrados en el sedimento durante aproximadamente 100 años (Cuellar-Martínez et al., 2017).

Cada especie de dinoflagelado puede mostrar un color característico durante un florecimiento algal, determinado por el tipo de pigmento que posea o la combinación de ellos, resaltando las clorofilas a y c2 (colores verdes), β-caroteno (colores naranja-rojizos) y peridinina (pardo-dorado), siendo este último un pigmento exclusivo de los dinoflagelados (ver figura 1 J; Zapata et al., 2012). Adicionalmente algunas especies de dinoflagelados tienen la capacidad para producir bioluminiscencia, lo cual dota a este grupo de gran notoriedad.

A pesar de que, por definición, todos los organismos fotosintéticos son capaces de producir su propio alimento, siempre existe una excepción a la regla. En este sentido, las especies de dinoflagelados practican una amplia variedad en formas de nutrición, la mitad de las especies realizan fotosíntesis, mientras que la otra mitad se alimenta de otros microorganismos. Sin embargo, la mayoría de las especies de dinoflagelados también practica la combinación de ambas formas de nutrición, lo que se conoce como mixotrofía (Stoecker et al., 2017).

La capacidad de alimentación externa en los dinoflagelados heterótrofos requiere de estructuras especializadas como el sulcus (surco longitudinal en la célula de los dinoflagelados que aloja el flagelo longitudinal) y ciertas prolongaciones o ranuras que asemejan bocas (ver figura 1, L, K). Los dinoflagelados que se alimentan a través de prolongaciones pueden ingerir presas 10 veces más grandes que ellos mismos, y algunas especies como Prorocentrum micans pueden tener varias bocas y engullir presas por diferentes ubicaciones al mismo tiempo. Lo anterior conlleva el uso de diferentes estrategias para la posible captación de las presas y al mismo tiempo el evitar a los depredadores (Jeong et al., 2005).

Como estrategia adicional para su sobrevivencia, los dinoflagelados poseen la capacidad de producir diversos compuestos químicos llamados ficotoxinas, que pueden transferirse a través de la cadena trófica hasta el humano por el consumo de mariscos contaminados, lo que provoca intoxicaciones y, en algunos casos, la muerte. Afortunadamente se han descubierto ciertas propiedades benéficas de las microalgas y sus aplicaciones, principalmente en países como Estados Unidos de América, Rusia, Irán, China y Japón (Tsianta, 2020).

Así, algunos de estos estudios con dinoflagelados demuestran que compuestos tóxicos como la saxitoxina y la tetrodotoxina se usan en tratamientos contra el dolor; el ácido ocadaico contra el Alzheimer, diabetes, sida y cáncer; mientras que la yesotoxina posee actividad antitumoral contra el cáncer de pulmón, colon y mama (Assunção et al., 2017). Otros estudios prueban que algunas especies no productoras de toxinas como Scrippsiella spp. crecen rápidamente y producen una gran cantidad de ácidos grasos que pueden ser usados como suplemento alimenticio para el ser humano y organismos acuáticos en cultivo (Xu et al. 2020).

Si bien los dinoflagelados pueden brindar grandes beneficios a la salud humana, sólo Crypthecodinium cohnii es cultivada industrialmente en la comunidad europea. Esta especie produce ácido decosahexaenoico (dha), el cual se usa para el enriquecimiento de fórmulas lácteas infantiles (Assunção et al., 2017). Por otro lado, Canadá cuenta con una patente para la obtención de un antioxidante a partir de Crypthecodinium spp. En México no se han establecido cultivos de dinoflagelados a nivel industrial, sólo se comercializan algunas cepas pertenecientes a la colección de dinoflagelados marinos (CODIMAR) con fines de investigación científica, ya que estos organismos son difíciles de cultivar y cosechar.

Se podría implementar el uso de diversos compuestos obtenidos a partir de cultivos de dinoflagelados en cualquier parte del mundo, ya que el fitoplancton marino se distribuye en todos los océanos, en ambos hemisferios norte y sur. Las regiones con mayor diversidad de especies son las regiones tropicales, el océano Índico, los mares del archipiélago indonesio-australiano y el océano Pacífico ecuatorial (De Vargas et al., 2015). La diversidad de dinoflagelados disminuye hacia latitudes altas, de la zona tropical a la zona templada, aumentando ligeramente al acercarse a los polos (Righetti et al., 2019).

Hoy en día, a nivel mundial, se conocen ~3000 especies de dinoflagelados y se calcula que hay más de 500 especies por descubrir (Appeltans et al., 2012). En particular, en el océano Pacífico mexicano (opm), se han registrado en total 605 especies que comprenden 91 géneros de dinoflagelados. Los más representativos son Protoperidinium, Ceratium, Dinophysis, Gonyaulax, Oxytoxum, Gymnodinium, Prorocentrum, Alexandrium, Ornithocercus y Amphidinium (Okolodkov y Gárate-Lizárraga, 2006), por lo que en el opm se encuentra ~20% de la diversidad global estimada de dinoflagelados.

Estudios recientes han reportado la diversidad de especies de dinoflagelados para algunas regiones del opm de la siguiente manera:

  • 168 especies pertenecientes a 41 géneros en el noroeste (Gárate-Lizárraga et al., 2007).
  • 211 especies pertenecientes a 31 géneros en el océano Pacífico central (Esqueda-Lara y Hernández-Becerril, 2010).
  • 102 especies pertenecientes a 31 géneros en el océano Pacífico tropical mexicano (Torres et al., 2019).

Sin restar importancia al gran número de publicaciones sobre los dinoflagelados en México, es necesario ampliar los estudios sobre las formas de vida y diversidad de estos organismos, para sentar las bases de su aplicación.

Conclusiones

La información con que se cuenta acerca de las estrategias evolutivas de los dinoflagelados, como su morfología, reproducción, tipos de alimentación, capacidad de formar quistes, producción de toxinas y bioluminiscencia, nos habla de lo importante que es la preservación de los ecosistemas silvestres. Dado que algunas especies no producen toxinas, pueden ser usadas para alimentar a otros organismos acuáticos en cultivo o en la producción de suplementos alimenticios; mientras que las especies productoras de toxinas pueden ser usadas para la obtención de diversos compuestos para múltiples aplicaciones. Con un total de ~1332 millones de kilómetros cúbicos de agua marina en el planeta y con más de 11,000 km de litoral mexicano, ¿cuántas especies más seremos capaces de descubrir?

Agradecimientos

Sonia Jeanetthe Delgado del Villar agradece el apoyo otorgado por conacyt (beca #335886). Los autores agradecen al equipo de trabajo del Laboratorio de Biotoxinas Marinas por el muestreo y registro fotográfico, al Lic. Rafael Serrano-Quiñonez y al Mat. Germán-Ramírez por la elaboración de figuras. Al Dr. Martín Frías Espericueta, por su revisión crítica del documento, y al Químico. Humberto Bojórquez Leyva por su apoyo en las salidas al campo. Este trabajo fue financiado por el Proyecto de Ciencia Básica A1-S-37026 “Caracterización de cepas de dinoflagelados potencialmente tóxicos aisladas del Pacífico mexicano en el contexto de Cambio Climático”, el proyecto UNAM DGAPA PAPIIT IN112914 “Efecto de la resuspensión de sedimentos, nutrientes y temperatura en la formación de florecimientos algales nocivos por dinoflagelados productores de toxinas paralizantes en el Pacífico Mexicano“, y el proyecto institucional Biotoxinas Marinas y sus efectos sobre organismos #326 del icmyl-unam.

Referencias

  • Assunção, J., Guedes, A. C. y Malcata, F. X. (2017). Biotechnological and pharmacological applications of biotoxins and other bioactive molecules from dinoflagellates. Marine Drugs, 15, 393. http://doi.org./10.3390/md15120393.
  • Appeltans, W., Ahyong, S. T., Anderson, G., Angel, A. V., Artois, T., Bailly, N., Bamber, R., Barber, A., Bartsch, I., Berta, A., Blazewicz-Paszkowycz, M., Bock, P., Boxshakk, G., Boyko, C. B., Brandäo, S. N., Bray, R. A., Bruce, N. L., Cairns, S. D., Chan, Chan, T. Y, … Costello, M. J. (2012). The magnitude of global marine species diversity. Current Biology, 22(23), 2189-2202. https://doi.org/10.1016/j.cub.2012.09.036.
  • Cortés-Altamirano, R., Alonso-Rodríguez, R. y Salas-de-León, D. A. (2019). Historical observations of algal blooms in Mazatlan Bay, Sinaloa, Mexico (1979-2014). PLoS ONE, 14(1), e0210631. https://doi.org/10.1371/journal.pone.0210631.
  • Cuellar-Martínez, T., Ruiz-Fernández, A. C., Sánchez-Cabeza, J. A. y Alonso-Rodríguez, R. (2017). Sedimentary record of recent climate impacts on an insular coastal lagoon in the Gulf of California. Quaternary Science Reviews, 160, 138-149. https://doi.org/10.1016/j.quascirev.2017.01.002.
  • De Vargas, C., Audic, S., Henry, N., Decelle, J., Mahe, F., Logares, R., Lara, E., Berney, C., Le Bescot, N., Probert, I., Carmichael, M., Poulain, J., Romac, S., Colin, S., Aury, J. M., Bittner, L., Chaffron, S., Dunthorn, M., Engelen, S., Flegontova, O., … Karsenti, E. (2015). Eukaryotic plankton diversity in the sunlit ocean. Science, 348(6237), 1-12. http://dx.doi.org/10.1126/science.1261605.
  • Esqueda-Lara, K. y Hernández-Becerril, D. U. (2010). Dinoflagelados microplanctónicos marinos del Pacífico central de México (Isla Isabel, Nayarit y costas de Jalisco y Colima). Universidad Autónoma de México.
  • Figueroa, R. I. y Bravo, I. (2005). Sexual reproduction and two different encystment strategies of Lingulodinium polyedrum (Dinophyceae) in culture. Journal of Phycology, 41, 370-379. https://doi.org/10.1111/j.1529-8817.2005.04150.x.
  • Gárate-Lizárraga, I., Band-Schmidt, C. J., Verdugo-Díaz, G., Muñeton-Gómez, M. S., Félix-Pico, E. F. (2007). Dinoflagelados (Dinophyceae) del sistema lagunar magdalena-almejas. En R. Funes Rodríguez, J. Gómez Gutiérrez y R. Palomares García (Eds.), Estudios Ecológicos en Bahía Magdalena (pp. 145-174). Gobierno del Estado de Baja California Sur; Fondo para la Protección de los Recursos Marinos de Baja California Sur; Instituto Politécnico Nacional; Centro Interdisciplinario de Ciencias Marinas. https://www.researchgate.net/publication/245536063_Dinoflagelados_Dinophyceae_del_Sistema_Lagunar_Magdalena-Almejas.
  • Gómez, F. (2012). A quantitative review of the lifestyle, habitat and trophic diversity of dinoflagellates (Dinoflagellata, Alveolata). Systematics and Biodiversity, 10(3), 267-275. http://dx.doi.org/10.1080/14772000.2012.721021.
  • haedat. (2021). Harmful algae information system. http://haedat.iode.org/.
  • Hoppenrath, M., Chomérat, N., Horiguchi, T., Schweikert, M., Nagahama, Y. y Murray, S. (2013). Taxonomy and phylogeny of the benthic Prorocentrum species (Dinophyceae) – a proposal and review. Harmful Algae, 27, 1–28. https://doi.org/10.1016/j.hal.2013.03.006.
  • Jeong, H. J., Yoo, Y. D., Kim, J. S., Seong, K. A., Kang, N. S. y Kim, T. H. (2005). Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Science Journal, 45(2), 65-91. https://doi.org/10.1007/s12601-010-0007-2.
  • Meng, F.W., Zhou, C.M., Chen, Z.L. y Yuan, X.L. (2005). The oldest known dinoflagellates: Morphological and molecular evidence from Mesoproterozoic rocks at Yongji, Shanxi Province. Chinese Science Bulletin, 50(12), 1230-1234. http://dx.doi.org/10.1007/BF03183698.
  • Moestrup, Ø., Akselmann-Cardella, R.; Churro, C.; Fraga, S.; Hoppenrath, M.; Iwataki, M.; Larsen, J.; Lundholm, N.; Zingone, A. (Eds.). (2009 onwards). ioc-unesco Taxonomic Reference List of Harmful Micro Algae. http://www.marinespecies.org/hab.
  • Okolodkov, Y. B. y Gárate-Lizárraga, I. (2006). An annotated checklist of dinoflagellates (Dinophyceae) from the Mexican Pacific. Acta Botanica Mexicana, 74(1), 1-154. http://dx.doi.org/10.21829/abm74.2006.1008.
  • Righetti, D., Vogt, M., Gruber, N., Psomas, A. y Zimmermann, N. E. (2019). Global pattern of phytoplankton diversity driven by temperature and environmental variability. Science Advances, 5(5), eaau6253. http://dx.doi.org/10.1126/sciadv.aau6253.
  • Tsianta, A. (2020). Pharmaceutical applications of Eukaryotic microalgae. [Tesis de maestría. International Hellenic University, Thessaloniki, Grecia]. https://repository.ihu.edu.gr/xmlui/bitstream/handle/11544/29668/a.tsianta.pdf?sequence=1.
  • Stoecker, D. K., Hansen, P. J., Caron, D. A. y Mitra, A. (2017). Mixotrophy in the marine plankton. Annual Review of Marine Science, 9, 311–335. http://dx.doi.org/10.1146/annurev-marine-010816-060617.
  • Torres, G., Carnicer, O., Canepa, A., De La Fuente, P., Recalde, S., Narea, R., Pinto, E. y Borbot-Córdo, M. J. (2019). Spatio-temporal pattern of dinoflagellates along the Tropical Eastern Pacific Coast (Ecuador). Frontiers in Marine Science, 6, 145. https://doi.org/10.3389/fmars.2019.00145.
  • Xu, S.J., Wu, K., Chan, S.C., Yau, Y., Chan, K. y Lee, F.W. (2020). Investigation of growth, lipid productivity, and fatty acid profiles in marine bloom-forming dinoflagellates as potential feedstock for biodiesel. Journal of Marine Science and Engineering, 8, 381. https://doi.org/10.3390/jmse8060381.
  • Zapata, M., Fraga, S., Rodríguez, F. y Garrido, J. L. (2012). Pigment-based chloroplast types in dinoflagellates. Marine Ecology Progress Series, 465, 33-52. http://dx.doi.org/10.3354/meps09879.


Recepción: 01/12/2020. Aprobación: 12/03/2021.

Show Buttons
Hide Buttons

Revista Digital Universitaria Publicación bimestral Vol. 18, Núm. 6julio-agosto 2017 ISSN: 1607 - 6079