Vol. 21, núm. 2 marzo-abril 2020

Más allá de pajaritos y abejitas: sexualidad en el adolescente mexicano

Claudia Alejandra Cervantes Lara, María Mercedes Moreno Gónzalez y Alicia Álvarez Aguirre Cita

Resumen

La adolescencia es una etapa de transición donde surgen cambios en cada una de las esferas que integran a una persona. Esto, aunado al crecimiento social acelerado, confronta a los adolescentes con nuevos desafíos respecto a su sexualidad. La falta de educación sexual integral desde la infancia y el tema de sexualidad tratado como un tabú permiten que se presenten consecuencias como el embarazo adolescente y enfermedades de transmisión sexual. Por lo tanto, se aborda dicha problemática, así como algunas estrategias que promueven el ejercicio de una sexualidad libre, informada y responsable.
Palabras clave: adolescencia, sexualidad, conducta sexual de riesgo, derechos sexuales, salud sexual.

Beyond birds and bees: sexuality in the Mexican teenager

Abstract

Adolescence is a transition stage where changes arise in each of the spheres that make up a person. This, coupled with accelerated social growth, confronts adolescents with new challenges regarding their sexuality. The lack of comprehensive sexual education since childhood and the issue of sexuality treated as a taboo allow consequences such as teenage pregnancy and sexually transmitted diseases. Therefore, this problem is addressed, as well as some strategies that promote the exercise of free, informed and responsible sexuality.
Keywords: adolescence, sexuality, risky sexual behavior, sexual rights, sexual health.

Los adolescentes representan un importante porcentaje de la población mundial, situación también presente en México. Por ello, resulta importante conocer los cambios que ocurren durante esa etapa para entender las problemáticas de salud, culturales y psicológicas a las que se pueden enfrentar.

La Organización Mundial de la Salud (oms) sitúa a los adolescentes entre los 10 y 19 años de edad (oms, 2017a). Alrededor de 1,200 millones de personas en el mundo se encuentran en este rubro, lo que representa la sexta parte de la población total (oms, 2017b). Las estadísticas señalan que sólo en nuestro país existen más de 22.4 millones de adolescentes (Secretaría de Salud México, 2015).

Las definiciones de adolescencia se dan en distintos planos: sociológicos, psicológicos, fisiológicos, legislativos, económicos, tradicionales, cognitivos, cronológicos, entre otros (Sebald cit. en Borrás Santisteban, 2014); sin embargo, esta etapa está caracterizada por ser un período donde surgen diversos cambios que llevan a la persona a dejar la niñez para convertirse en adulto. Éstos ocurren en los aspectos físico, psicoemocional y social, lo que marca el comienzo de una búsqueda de identidad y de sentido de vida (unicef, 2017).

Es por ello que el término adolescencia suele ir acompañado de una visión negativa por parte de los adultos, ya que se trata de una etapa complicada pues, para algunos, todos estos cambios son difíciles de manejar, lo que se puede traducir en inestabilidad, estrés, búsqueda de independencia y necesidad de formar una identidad propia.

Aún más, durante la adolescencia, suele iniciarse la vida sexual, lo cual añadido a falta en el control de impulsos y labilidad emocional, pues el interés sexual aumenta al surgir la curiosidad por experimentar sensaciones nuevas (Romo Rodríguez), podría inclinar a los adolescentes hacia conductas de riesgo, en especial, vinculadas a las prácticas sexuales.

Imagen 1. Es importante el acercamiento a los jóvenes con el fin de conocer sus necesidades y expectativas, para con ello diseñar intervenciones en sexualidad que puedan resolver problemáticas actuales. Cortesía de Cervantes-Lara.

En esta etapa, comienza la lejanía con los padres; en cambio, los amigos se convierten en sus principales figuras (Gaete, 2015), y son ellos quienes toman parte importante en decisiones como la vestimenta, la elección de parejas sentimentales y el inicio o retraso de la actividad sexual. En ese sentido, los estudiantes que poseen amigos que practican conductas sexuales riesgosas (csr) podrían tener una mayor probabilidad de también hacerlo (Forcada Mier et al., 2013).

Entre las csr encontramos, por ejemplo, el uso nulo o la falta constante de métodos de barrera como el condón y anticonceptivos, mantener relaciones sexuales bajo el uso de sustancias nocivas, tener actividad sexual con un alto número de parejas (Forcada Mier et al.,2013; Negeri, 2014) o con trabajadores sexuales (Golin et al., 2012), así como el inicio temprano de vida sexual. Dichas prácticas incrementan la posibilidad de contraer alguna enfermedad venérea o de un embarazo no deseado. Cabe destacar que estas conductas no sólo afectan la salud física del adolescente, sino que también lo hacen a nivel educativo, familiar, económico y social, tanto en el presente como en el futuro.

La existencia de estas conductas en México se vuelve clara al observar que las principales causas de muerte en adolescentes son complicaciones en el embarazo, el suicidio, la violencia y los accidentes (oms, 2017b). En efecto, América Latina ocupa los primeros lugares con mayor tasa de embarazos adolescentes (Secretaría de Salud México, 2015). A su vez, la oms ha advertido que cada año se registran 44 nacimientos por cada 1000 chicas de entre 15 a 19 años (oms, 2017a), siendo este grupo el que mayor porcentaje de embarazos no planeados presenta: 73.9% (inegi, 2016).

El embarazo adolescente es un problema de salud pública, porque expone la salud física de la mujer y de su hijo. Sin embargo, esto no siempre es apreciado entre los adolescentes masculinos, quizá producto de los estereotipos sociales donde la culpa y responsabilidad del acto sexual recae, sobre todo, en la mujer.

Imagen 2. La inclusión del hombre en temas de uso de métodos anticonceptivos y de barrera, el embarazo, la interrupción legal del embarazo, etcétera, es de suma importancia para garantizar el ejercicio pleno de sus derechos sexuales y reproductivos. Cortesía de Cervantes-Lara.

Por otra parte, desde su despenalización, en abril del 2007, hasta abril del 2018 se han llevado a cabo en la Ciudad de México 208,353 servicios de aborto. No obstante, la interrupción del embarazo no es legal en todo el país, por lo que todavía se realizan abortos clandestinos, exponiendo a las mujeres a un alto riesgo de contraer infecciones, a perder su capacidad reproductiva o incluso la vida por una mala praxis (Grupo de Información en Reproducción Elegida, 2018).

De acuerdo con la Encuesta Nacional de la Dinámica Demográfica 2014, en nuestro país, la participación del hombre en el uso de los métodos anticonceptivos disminuyó de 23% a 19.8%, cifra que puede estar justificada por la notable falta de inclusión en programas de salud (inegi, 2016), y por los estereotipos, roles de género y normas sociales que limitan sus acciones. Además, la modernización de más métodos anticonceptivos exclusivos para mujeres podría segregar los procedimientos que involucran la colaboración, ya sea directa o indirecta, del hombre, como el uso del condón, la vasectomía, el retiro (coito interrumpido) y el ritmo o método de calendario (Rojas, 2014).

Imagen 3. La promoción de una educación sexual integral permite reconocer la importancia de una sexualidad saludable en la que se incluya el respeto a la diversidad, las prácticas sexuales, las infecciones de transmisión sexual, las alternativas de placer, el amor, el género, la capacidad reproductiva y los servicios a los que puede acercarse el adolescente para recibir atención y orientación acorde con sus necesidades. Cortesía de Cervantes-Lara.

Una de las consecuencias de las csr es la transmisión y adquisición del virus de inmunodeficiencia humana (vih), posicionado como la segunda causa de muerte en adolescentes (oms, 2016). Esto ha llevado a México a ser catalogado como un país en estado de epidemia con vih (censida, 2015). De igual manera, datos de la oms revelan que más de un millón de personas cada día contraen una infección de transmisión sexual (ets) y que existen 290 millones de mujeres infectadas en el área genital, oral o anal con el virus del papiloma humano (vph) (oms, 2016).

Las conductas sexuales riesgosas que suceden en la adolescencia terminan por repercutir en la vida adulta. De acuerdo con la oms, muchos de los problemas de salud en edades mayores comenzaron desde la juventud, producto del consumo de alcohol, infecciones de transmisión sexual, falta de ejercicio y una carente o inadecuada alimentación (oms, 2017b).

De acuerdo con las cifras nacionales de la Encuesta Nacional sobre Disponibilidad y Uso de Tecnologías de la Información en los Hogares (endutih), cerca de 62.4 millones de personas a partir de los seis años son usuarias de los servicios que ofrece internet (inegi, 2014); lo cual, en conjunto con el uso de las redes sociales, podría facilitar conductas de riesgo.

A través de internet, los niños y adolescentes pueden estar en contacto con información errónea o no apta para su edad, acoso cibernético y visualización de contenido explícito. Por tanto, es de suma importancia realizar intervenciones con énfasis en el control del uso de medios electrónicos por parte de los padres o tutores.

Sobre este tema, Rice revela, a partir de su estudio Cell Phone Internet Access, Online Sexual Solicitation, Partner Seeking, and Sexual Risk Behavior Among Adolescents, que los estudiantes con acceso a internet tenían mayor probabilidad de ser sexualmente activos y de mantener relaciones sexuales con una persona con la que se pusieron en contacto en internet (2015). Lo anterior suele asociarse al empleo de aplicaciones diseñadas para encuentros sexuales, falta de control parental, alta exposición a medios electrónicos, presión social y búsqueda de nuevas experiencias por parte de los adolescentes.

No obstante, el acceso a toda esa información, por el contrario, podría favorecer que los adolescentes tengan mayor y mejor conocimiento sobre sexualidad, y puedan realizar decisiones informadas al respecto. Esto nos lleva a reflexionar, entonces, si el uso de internet y medios electrónicos es un factor protector o de riesgo para los adolescentes.

Por otra parte, al iniciar la vida sexual, también resulta importante estar consciente sobre la posibilidad de un embarazo y de lo que conlleva, pues si bien esta decisión forma parte de los derechos sexuales y reproductivos, el contar con el nivel máximo de salud también lo es. En consecuencia, brindar información y facilitar el acceso a los diversos métodos de barrera y anticoncepción tiene un papel crucial para una elección libre pero informada. En ese sentido, los profesores y personal de salud pueden fomentar en el adolescente la construcción de un proyecto de vida, motivarlo a visualizar claramente sus metas y los impactos de cada acción.

Acerca del embarazo, se considera necesario un acompañamiento continuo y personalizado, que considere los aspectos culturales de adolescente, como su religión, estado físico, emocional y económico. Para ello se sugiere recibir apoyo psicológico, así como asesoría gratuita para el control prenatal o sobre las clínicas de aborto regularizadas.

En relación con los hombres, quienes cuentan con menor número de métodos anticonceptivos, se deberá concientizar sobre su derecho de decidir si quiere tener hijos, cuántos y el espaciamiento entre ellos. Esto implica, por supuesto, el compromiso de conocer qué opciones hay para el control de paternidad, la desmitificación de los efectos adversos de la vasectomía y acabar con los estereotipos sociales que impiden ejercer una sexualidad responsable, libre e informada.

Conclusiones

La adolescencia es sin duda una de las principales etapas de cambio dentro de la vida humana, lo que puede traer consigo confusión, problemáticas sociales, familiares y emocionales; ya que la mayoría de las veces el joven carece de comprensión por parte de quienes lo rodean. Por ello, se deben implementar estrategias desde el ámbito familiar, en donde se dé información a temprana edad sobre los riesgos de practicar conductas de riesgo que pueden perjudicar la salud física y mental. Asimismo, se deben considerar los cambios sociales a los que se enfrenta para aumentar la autoeficacia y la autoestima en el adolescente, con fin de que sea capaz de afrontar cualquier situación.

De este modo, toda perspectiva orientada al tema debe incidir en que los adolescentes tomen decisiones con el conocimiento de sus derechos. La cuestión radica en promover el ejercicio de estos derechos estando consciente de sus posibles consecuencias.

El conocimiento de la sexualidad y el ejercicio de la misma han sido vistos desde una perspectiva negativa, lo que orilla a los adolescentes a iniciar vida sexual de manera secreta, disminuyendo la posibilidad de adquirir métodos de protección. Este hecho también repercute en la falta de autoconocimiento, producto de una carente autoexploración; ejemplo de ello es que enfermedades prevenibles como cáncer de mama o cervicouterino van en aumento porque la mayoría población no sabe si una protuberancia en su cuerpo es normal o cuánto tiempo tiene de haber aparecido.

La sexualidad es un tema muy amplio que requiere ser tratado a edades tempranas para que cuando el individuo llegue a la adolescencia cuente con las herramientas necesarias para lograr asertividad sexual. Además, es necesario conocer el cuerpo a través de la autoexploración y de la masturbación, decidir libremente sobre la orientación sexual, conocer la diversidad de prácticas para obtener placer, siempre y cuando representen bajo riesgo de contagio y embarazo, y estar al tanto de los lugares donde pueden acercarse para recibir atención de manera gratuita.

La adolescencia, a pesar de los retos y desafíos, es el momento en el que se puede disfrutar de la compañía de amigos, experimentar la emoción de la primera pareja, escoger los estudios a realizar, viajar, desarrollarse académicamente y disfrutar plenamente de actividades recreativas. Con consciencia sobre la sexualidad, los métodos anticonceptivos y las conductas de riesgo, además de un ambiente familiar y social en el que se promueva el conocimiento sobre los derechos sexuales y sus implicaciones, en conjunto con autoconocimiento y autoexploración, contaremos con adolescentes que podrán enfrentarse a los nuevos desafíos. ¿Será esto posible? ¿Hay que considerar otras alternativas? Una cosa es segura, debemos tratar la sexualidad más allá de pajaritos y abejitas.

Información de interés

Referencias



Recepción: 11/04/2018. Aprobación: 23/09/2019

Vol. 21, núm. 2 marzo-abril 2020

Antisépticos orales, ¿los estamos utilizando de manera correcta?

Saray Aranda Romo, Juan Manuel Mendoza Méndez, Juan Antonio Cepeda Bravo y Othoniel Hugo Aragón Martínez Cita

Resumen

Los enjuagues bucales son soluciones que se emplean después del cepillado para eliminar las bacterias que causan la caries, la inflamación de las encías y el mal aliento, con la finalidad de mantener la boca limpia y sana. Sin embargo, en ocasiones, la falta de conocimiento del consumidor deriva en el abuso en su empleo, lo que provoca una serie de efectos adversos que deben ser conocidos por los usuarios. Los medios de comunicación juegan un papel muy importante para que la población utilice los enjuagues bucales y los odontólogos, en algunos casos, los recetan a sus pacientes, junto con el cepillado dental, para el tratamiento de enfermedades. El objetivo del artículo es mostrar a la población los tipos de enjuagues bucales que existen en el mercado, cómo funcionan, y sus ventajas y desventajas, con la finalidad de evitar su uso indiscriminado. Además, se discute sobre el empleo de bacterias “buenas” como auxiliares en la higiene bucal. Esta nueva terapia ha demostrado ser segura y eficaz por lo que probablemente en poco tiempo estará disponible en el mercado.
Palabras clave: enjuague bucal, antiséptico oral, caries, periodontal, halitosis.

Mouthrinses, are we using them correctly?

Abstract

Oral mouth rinses are solutions that are used after brushing to eliminate the bacteria that cause tooth decay, gingivitis and bad breath, in order to keep the mouth clean and healthy. However sometimes, the lack of knowledge of the consumer results in abuse in their employment, generating a series of adverse effects that must be known by users. Media is important in promoting the use of mouthwashes in the population and dental care professionals in some cases prescribe them as auxiliary teeth brushing. The aim of this article is to show the types of oral mouth rinses that exist in the market, how they work and their advantages and disadvantages, in order to avoid its indiscriminate use. In addition, the employment of good bacteria as an aid in oral hygiene is discussed. This new therapy has been shown to be safe and effective, therefore, it will probably be available in the market in a short time.
Keywords: mouthwash, oral antiseptic, caries, periodontal, halitosis.

Salud y enfermedad buco-dental

El cepillado de dientes es esencial para mantener una boca sana, ya que permite la eliminación de restos de comida que se quedan adheridos a los dientes, los cuales rápidamente son utilizados por las bacterias para producir sustancias que causan enfermedades en los dientes (caries), encías (gingivitis) o en el hueso que soporta los dientes (periodontitis) (Krzyściak & Skalniak, 2014). Así pues, el cepillado favorece que crezcan en la boca bacterias benéficas que mantienen a los dientes fuertes y sanos.

Sin embargo, cuando quedan restos de alimentos que contienen azúcar en los dientes, éstos sirven de comida para las bacterias dañinas (Streptococcus mutans), que empiezan a crecer de manera descontrolada y a sobrepasar a las bacterias benéficas (Streptococcus dentisani). Lo anterior ocasiona que el diente se debilite y haya desmineralización o caries dental (Esberg et al., 2017). Por otro lado, esos restos de comida pueden quedar atrapados entre la encía y el diente, y, entonces, las bacterias de la boca comienzan a formar una estructura muy delgada llamada biopelícula, la cual está constituida por una gran cantidad de microorganismos que son capaces de activar a las células de defensa para evitar que se extiendan. Así, la encía se pone roja, hinchada y sangrante, lo cual llamamos gingivitis (ver imagen 1). Si la biopelícula logra meterse al hueso que soporta a los dientes, comienza a destruirlo, y a mover las piezas dentales (periodontitis) (Colombo & Tanner, 2019). Todo este desequilibrio, en donde predominan las bacterias dañinas, favorece la síntesis de compuestos llamados “ácidos grasos y compuestos volátiles de sulfuro”, ambos responsables del mal aliento (Scully, 2014).

Figura 1. a) Etiología de la caries. Las bacterias acidófilas (como Streptococcus mutans) se alimentan de los azúcares presentes en el medio oral y producen ácido acético y ácido láctico. Altas concentraciones de esos ácidos favorecen la desmineralización, debilitando las piezas dentarias y provocando fracturas. b) La enfermedad periodontal se da dentro del espacio subgingival, donde la acumulación de microorganismos (como P. gingivalis) provoca una inflamación, que favorece la difusión de nutrientes usados por esta bacteria misma para su crecimiento.

Higiene bucal

Con la finalidad de mantener a las bacterias en equilibrio, la función principal del odontólogo es educar al paciente mediante la implementación de estrategias como la enseñanza de una correcta técnica de cepillado, el uso de hilo dental, o modificaciones a la dieta, así como la prescripción de enjuagues bucales (Osso & Kanani, 2013). Éstos últimos son soluciones que se emplean antes o después del cepillado dental para reducir temporalmente las bacterias que producen el mal aliento, la caries y la inflamación de las encías, dejando un aliento fresco y un sabor agradable (Yang et al., 2015).

Existen dos tipos de enjuagues bucales: los cosméticos y los terapéuticos. Los primeros pueden controlar el mal aliento y dejar un agradable sabor. En contraste, los segundos poseen ingredientes activos que ayudan a controlar o reducir enfermedades bucales mediante la adición de flúor para prevenir el desarrollo de caries o antisépticos para prevenir gingivitis y periodontitis (Silverman & Wilder, 2006).

La eficacia de los enjuagues bucales terapéuticos depende de la composición del antiséptico. Su presentación comercial, mecanismo de acción, ventajas e indicaciones se muestran en la tabla 1.

Tabla 1. Enjuagues bucales más comunes en México (Laboratorio profeco, 2009).
*De acuerdo con la dosis administrada y uso prolongado.

Principio activo Cloruro de cetilpiridinio Aceites esenciales Flúor Clorhexidina
Productos Scope® Listerine® Dental max® Oral-B gingivitis®
Alcohol SI SI NO NO
Mecanismo de acción Actúa sobre la pared de bacterias y hongos Actúa sobre la pared de bacterias y hongos Favorece el endurecimiento del esmalte dental Actúa sobre la pared de bacterias, virus y hongos
Uso sugerido Dos veces al día por 30 s 2/3oz y escupir Dos veces al día por 30 s 2/3oz y escupir Dos veces al día por 30 s 2/3oz y escupir Después del cepillado diluir ½ oz con agua y enjuagar, escupir
Beneficios Reduce la placa
Controla y previene la gingivitis
Reduce el mal aliento hasta por 12hrs
Reduce la placa
Fortalece los dientes
Previene la gingivitis
Protege contra la caries Validado por la FDA& para el tratamiento de la gingivitis
Efectos adversos Pigmentación café en los dientes, ulceras orales e irritación de la boca Ardor, quemadura, alergia, dolor de la encía, lengua negra vellosa, candidiasis Afección esquelética, renal, neurológica, hormonal* Pigmentación dental, incremento en la formación de sarro, alteración del sentido del gusto

Los enjuagues bucales se venden sin receta y son de fácil acceso para la población, se pueden adquirir en supermercados y farmacias, generalmente. Los precios varían entre $48 y $300 pesos. Los medios de comunicación son los encargados de recomendar su uso rutinario como coadyuvantes en el cuidado de la salud oral. El consumidor es atraído por los beneficios publicitados por el vendedor: dientes fuertes, aliento fresco, blanqueamiento saludable, entre otros. Esto lleva a una rutina de consumo fuera de los criterios terapéuticos odontológicos adecuados y a su uso indiscriminado (Tanner et al., 2011).

Sólo existen datos con respecto a la utilización de enjuagues bucales en Estados Unidos. En el año 2011, 188.16 millones de habitantes consumían enjuagues bucales. Para el año 2018, la cifra aumentó a 202.04 millones. Se prevé que para el 2020, suba a 205.59 millones de consumidores (Lemos & Villoria, 2008). Desafortunadamente, se desconoce el porcentaje de cuántos de éstos son usados con prescripción médica y cuántos no.

El abuso en el consumo de enjuagues bucales representa un riesgo para la salud oral y sistémica de los individuos. Por ejemplo, muchos enjuagues bucales contienen alcohol y deshidratan la mucosa bucal, lo que afecta el flujo salival, y si éste disminuye el riesgo a desarrollar caries se incrementa (Lemos & Villoria, 2008). Por otro lado, el uso de enjuagues que contienen alcohol se ha asociado con el desarrollo de cáncer oral y orofaríngeo, en diversos estudios. Esto se debe a que la exposición constante al alcohol favorece la absorción de compuestos cancerígenos como tabaco, metales y algunos aditivos del enjuague bucal como el uretano (Ustrell-Borràs, Traboulsi-Garet, & Gay-Escoda, 2019). El uso de aceites esenciales y del cetilpiridinio también puede tener un impacto negativo en las restauraciones dentales, lo que favorece su fractura, fenómeno frecuente en sujetos que hacen uso excesivo de los enjuagues bucales (Silverman & Wilder, 2006).

Si bien los enjuagues bucales eliminan un gran porcentaje de los microorganismos responsables de enfermedades, el consumidor debe saber que también tienen efectos adversos sobre la estabilidad de las bacterias benéficas que habitan en la boca (ver figura 2). Al igual que con el consumo de antibióticos sin prescripción médica, los enjuagues eliminan las bacterias benéficas o probióticas del individuo. Entre ellas destacan las que ayudan al control de la presión arterial, por lo que ésta podría incrementar con el uso de enjuagues que contienen clorhexidina al 0.12% (Senkus & Crowe-White, 2019). Esto se debe a que las bacterias de la boca producen una sustancia (óxido nitrico), que permite que los vasos sanguíneos se dilaten manteniendo la presión arterial dentro de los rangos normales.

Figura 2. a) Se muestra una microbiota colonizada por microorganismos relacionados con la salud y la enfermedad. b) Tras un tratamiento con enjuague bucal terapéutico, se evidencia cómo no sólo las cepas responsables de la enfermedad son erradicadas, sino también aquellas responsables de la salud bucal.

Otra bacteria probiótica importante que es eliminada por el uso de enjuagues bucales, es el Streptococcus dentisani, descubierta en 2014, por un grupo de investigadores en Valencia, España (Camelo-Castillo, et al., 2014). Posteriormente, en 2017, se demostró que dicha bacteria era capaz de inhibir el crecimiento de Streptococcus mutans, la principal causante de caries dental, así como a las bacterias responsables de la enfermedad periodontal y mal aliento (López-López, et al., 2017). Pese a que no se cuentan con estudios sobre la viabilidad de S. dentisani frente a soluciones antisépticas, sus características microbianas hacen pensar que también son susceptibles a la clorhexidina y al cloruro de cetilperidinio.

El cepillado dental y la utilización de enjuagues bucales de manera rutinaria no ha podido reducir la frecuencia de enfermedades bucales a pesar de que llevan en el mercado más de 100 años (Garry & Boran, 2017). No obstante, el uso médico prolongado de antisépticos orales a base de clorhexidina tampoco parece ser la solución para evitar el mal aliento. Schmidt et al. (2016), demostraron que el uso de ésta provocaba un daño severo a las paredes que recubren la boca, lo que ocasiona la muerte de las células que la forman. De esta manera, la boca se vuelve más susceptible a ulceraciones o lesiones que generen sangrado.

Es necesario, entonces, buscar terapias alternativas al cepillado dental y uso de enjuagues bucales, con la finalidad de controlar el crecimiento de las bacterias dañinas y favorecer la proliferación de aquellas con potencial benéfico para el individuo. Por tal motivo la bacterioterapia se ha introducido recientemente con resultados prometedores (Alok et al., 2017). Este procedimiento se basa en la administración de un gel que contiene altas concentraciones de la bacteria probiótica (S. dentisani), la cual, de acuerdo a un estudio reciente, logra adherirse a la superficie dental. Este probiótico oral (AB-Dentisanium®) solo se encuentra disponible en España, pero se espera que pronto se encuentre en México (Ferrer et al., 2019).

La investigación actual se dirige al descubrimiento de nuevas bacterias probióticas orales, las cuales puedan ser usadas como alternativas para mantener la salud oral de los individuos y a que no se desarrollen enfermedades una vez que se incorporen a la boca. También se investigan virus que puedan infectar selectivamente a una bacteria (bacteriófagos). Se ha evaluado al bacteriófago apcm01, que ha demostrado infectar selectivamente a S. mutans y eliminarlo (Dalmasso et al., 2015).

Asimismo, se encuentran en investigación enjuagues bucales con arginina, sustancia que es considerada un prebiótico o alimento de las bacterias benéficas, quienes la convierten en amoniaco, capaz de eliminar la producción de ácidos y de esta forma evitar la caries dental (Geraldeli et al., 2017, ver figura 3).

Figura 3. a) Se puede observar la proporción entre las especies S. dentisani y S. mutans, con bajas concentraciones de arginina, en el medio oral. b) Tras un tratamiento con agentes externos compuestos por arginina, las copias de S. mutans disminuyen gracias al aumento de S. dentisani, a su actividad bactericida y un aumento gradual del pH, en el medio oral.

Conclusiones

Actualmente existe un uso indiscriminado de los enjuagues bucales, situación que se debe a que los pacientes los adquieren sin la orientación apropiada por un profesional. Es necesario limitar su empleo en el tratamiento de enfermedades bucales, bajo estricta indicación y supervisión por parte del odontólogo, el cual recetará el enjuague bucal adecuado, al hacer un análisis de las características de cada paciente.

Referencias

  • Alok, A., Singh, I. D., Singh, S., Kishore, M., Jha, P. C., & Iqubal, M. A. (2017). Probiotics: A New Era of Biotherapy. Advanced Biomedical Research, 6, 1-31. doi: https://doi.org/10.4103/2277-9175.192625.
  • Camelo-Castillo, A., Benitez-Paez, A., Belda-Ferre, P., Cabrera-Rubio, R., & Mira, A. (2014). Streptococcus dentisani sp. Nov., a novel member of the mitis group. International journal of systematic and evolutionary microbiology, 64, 60-65. doi: https://doi.org/10.1099/ijs.0.054098-0.
  • Colombo, A. P. V., & Tanner, A. C. R. (2019). The Role of Bacterial Biofilms in Dental Caries and Periodontal and Peri-implant Diseases: A Historical Perspective. Journal of Dental Research, 98, 373-385. doi: https://doi.org/10.1177/0022034519830686.
  • Dalmasso, M., de Haas, E., Neve, H., Strain, R., Cousin, F. J., Stockdale, S. R., … Hill, C. (2015). Isolation of a Novel Phage with Activity against Streptococcus mutans Biofilms. Plos One, 10, 1-10. doi: https://doi.org/10.1371/journal.pone.0138651.
  • Esberg, A., Sheng, N., Mårell, L., Claesson, R., Persson, K., Borén, T., & Strömberg, N. (2017). Streptococcus Mutans Adhesin Biotypes that Match and Predict Individual Caries Development. EBioMedicine, 24, 205-215. doi: https://doi.org/10.1016/j.ebiom.2017.09.027.
  • Ferrer, M. D., López-López, A., Nicolescu, T., Salavert, A., Méndez, I., Cuñé, J., Mira, A. (2019). A pilot study to assess oral colonization and pH buffering by the probiotic Streptococcus dentisani under different dosing regimens. Odontology, 1, 1-12. doi: https://doi.org/10.1007/s10266-019-00458-y.
  • Garry, B., & Boran, S. (2017). Promotion of oral health by community nurses. British Journal of Community Nursing, 22, 496-502. doi: https://doi.org/10.12968/bjcn.2017.22.10.496.
  • Geraldeli, S., Soares, E. F., Alvarez, A. J., Farivar, T., Shields, R. C., Sinhoreti, M. A. C., & Nascimento, M. M. (2017). A new arginine-based dental adhesive system: Formulation, mechanical and anti-caries properties. Journal of Dentistry, 63, 72-80. doi: https://doi.org/10.1016/j.jdent.2017.05.024.
  • Krzyściak, W., Jurczak, A., Kościelniak, D., Bystrowska, B., & Skalniak, A. (2014). The virulence of Streptococcus mutans and the ability to form biofilms. European Journal of Clinical Microbiology & Infectious Diseases: Official Publication of the European Society of Clinical Microbiology, 33, 499-515. doi: https://doi.org/10.1007/s10096-013-1993-7.
  • Laboratorio profeco (2009).Enjuages bucales. La promesa del aliento perfecto. Revista del consumidor, febrero, 44-51. Recuperado de: https://www.gob.mx/cms/uploads/attachment/file/119110/Estudio_Enjuagues_bucales_44-51_Febrero_2009.pdf.
  • Lemos, C. A., & Villoria, G. E. M. (2008). Reviewed evidence about the safety of the daily use of alcohol-based mouthrinses. Brazilian Oral Research, 22, Suppl 1, 24-31. doi: https://doi.org/10.1590/s1806-83242008000500005.
  • López-López, A., Camelo-Castillo, A., Ferrer, M. D., Simon-Soro, Á., & Mira, A. (2017). Health-Associated Niche Inhabitants as Oral Probiotics: The Case of Streptococcus dentisani. Frontiers in Microbiology, 8, 1-10. doi: https://doi.org/10.3389/fmicb.2017.00379.
  • Osso, D., & Kanani, N. (2013). Antiseptic mouth rinses: An update on comparative effectiveness, risks and recommendations. Journal of Dental Hygiene, 87, 10-18. Recuperado de: http://eds.a.ebscohost.com/eds/pdfviewer/pdfviewer?vid=0&sid=df2312db-a9a4-4cd3-a02e-2f37f0a73d63%40sdc-v-sessmgr03.
  • Schmidt, J., Zyba, V., Jung, K., Rinke, S., Haak, R., Mausberg, R. F., & Ziebolz, D. (2016). Cytotoxic effects of octenidine mouth rinse on human fibroblasts and epithelial cells – an in vitro study. Drug and Chemical Toxicology, 39, 322-330. doi: https://doi.org/10.3109/01480545.2015.1121274.
  • Scully, C. (2014). Halitosis. bmj Clinical Evidence, 1, 10-16.
  • Senkus, K. E., & Crowe-White, K. M. (2019). Influence of mouth rinse use on the enterosalivary pathway and blood pressure regulation: A systematic review. Critical Reviews in Food Science and Nutrition, 8, 1-13. doi: https://doi.org/10.1080/10408398.2019.1665495.
  • Silverman, S., & Wilder, R. (2006). Antimicrobial mouthrinse as part of a comprehensive oral care regimen. Safety and compliance factors. Journal of the American Dental Association, 137, Suppl:22, S-26S. doi: https://doi.org/10.14219/jada.archive.2006.0406.
  • Tanner, A. C. R., Mathney, J. M. J., Kent, R. L., Chalmers, N. I., Hughes, C. V., Loo, C. Y., Dewhirst, F. E. (2011). Cultivable Anaerobic Microbiota of Severe Early Childhood Caries. Journal of Clinical Microbiology, 49, 1464-1474. doi: https://doi.org/10.1128/JCM.02427-10.
  • Ustrell-Borràs, M., Traboulsi-Garet, B., & Gay-Escoda, C. (2019). Alcohol-based mouthwash as a risk factor of oral cancer: A systematic review. Medicina Oral, Patología Oral y Cirugía Bucal, 1, 1-10. doi: https://doi.org/10.4317/medoral.23085.
  • Yang, S.-J., Han, S.-H., Lee, A.-R., Jun, J.-H., Son, M.-W., Oh, S.-H., Jaehong, K. & Paik, S.-Y. (2015). Evaluation of antimicrobial effects of commercial mouthwashes utilized in South Korea. bmb Reports, 48, 42-47. doi: https://doi.org/10.5483/BMBRep.2015.48.1.090.


Recepción: 07/05/2019. Aprobación: 21/11/2019

Vol. 21, núm. 2 marzo-abril 2020

Los aliados emplumados de los copales y cuajiotes de México: aves y la dispersión de semillas de Bursera

Carlos A. Cultid-Medina y Yessica Rico Cita

Resumen

Los copales y cuajiotes, pertenecientes a la familia Burseraceae y del género Bursera, son árboles cuya diversidad de especies se concentra en México y son dominantes de los bosques tropicales secos. Tienen un alto valor cultural, económico y ecológico, ya que de ellos se extraen resinas aromáticas como el incienso, esencias naturales y madera para la elaboración de artesanías como alebrijes, máscaras y figurillas religiosas. A pesar de su importancia, el conocimiento de relaciones biológicas con especies asociadas a las burseras, como son sus polinizadores y dispersores de semillas, es aún limitado. En este trabajo se tratará la relación entre las aves y la burseras, al enfocarnos en cómo ocurre el proceso de la dispersión de semillas, la importancia que tiene para su supervivencia y las acciones concretas necesarias para la conservación de esta vital interacción.
Palabras clave: dispersión de semillas, Bursera, interacciones biológicas, aves, conservación.

The feathered partners of Copales and Cuajiotes: Birds and the Bursera seed dispersion

Abstract

Copales and cuajiotes are trees, from the family Burseraceae and genus Bursera, whose center of species diversity is Mexico, being dominant species of the dry tropical forests. They have a high cultural, economic, and ecological value since they provide aromatic resins (incense), natural essences, and wood to produce crafts such as alebrijes, masks, and religious figures. Despite its importance, our knowledge on the biological relationships that exists between Bursera and their pollinators and seed dispersers is still limited. In this paper we discuss the relationship between birds and burseras, we focus on explaining how the seed dispersal process occurs, the importance of such process for their survival and the concrete actions that are needed for the conservation of this vital interaction.
Keywords: seed dispersion, Bursera, biological interactions, birds, conservation.

Introducción

Seguramente en algún momento te has preguntado ¿cómo es que las plantas están en todas partes si no se mueven? Aunque no se desplazan como los animales, las plantas se mueven a través de las semillas, ya que durante su larga historia evolutiva se han seleccionado estrategias extraordinarias para estar a lo largo y ancho del planeta, al usar agentes vivos (bióticos) y no vivos (abióticos) (Murray, 2012).

Hay plantas que en sus semillas tienen estructuras aladas (ej. semilla de la jacaranda) que les permiten aprovechar el viento para ser transportadas lejos, mientras que otras poseen espinas o sustancias pegajosas que facilitan su adhesión al pelo de los animales. Pero ¿para qué sirven estas estrategias? En las plantas con flores (angiospermas) todas éstas tienen el mismo objetivo: garantizar que las semillas se alejen lo más lejos posible de sus padres y de sus semillas hermanas, evitando así la reproducción con los individuos de su familia mientras promueven la ocupación de nuevos sitios. Los científicos llaman este fenómeno dispersión (Dalling, 2002) y es el proceso biológico más importante para la supervivencia de plantas después de la polinización, debido a que, incluso si hay polinización, si se carecen de los medios para la dispersión de sus semillas, las plantas estarán en riesgo de desaparecer.

A causa de su variedad, los científicos clasifican las estrategias de dispersión según el agente involucrado. Por ejemplo, existen plantas que se dispersan por el esfuerzo explosivo de sus semillas (autocoria), a través del agua (hidrocoria), usando el viento (anemocoria) o buscando aliados en los animales (zoocoria) (Murray, 2012). En este último caso, encontramos formas variadas y llamativas en que las plantas se relacionan con diferentes tipos de animales, como las aves frugívoras que se encargan de comer frutos y semillas.

Aunque la zoocoria es una de las estrategias de dispersión más común entre las plantas con flor (Dalling, 2002), la interacción entre planta y ave es un fenómeno que apenas empezamos a entender para muchas especies de flora. Un ejemplo de esto es la relación entre las aves y los árboles conocidos popularmente como copales y cuajiotes. A continuación, explicaremos algunos aspectos sobre la reproducción y dispersión de semillas de estos árboles y abordaremos la importancia que tienen las aves para la supervivencia de los bosques tropicales secos.

Una flora muy mexicana

Pertenecientes al género botánico Bursera, los copales y cuajiotes son árboles o arbustos que pierden sus hojas durante la época seca del año, o sea, son caducifolios. En México existe la mayor diversidad de especies de burseras, con alrededor de 90 especies, la mayoría exclusivas del país (Rzedowski et al., 2005).

Estos árboles evolucionaron a la par de los bosques tropicales secos del occidente de México. Son de gran importancia cultural y religiosa desde la época prehispánica, ya que durante este período se usaban en la elaboración de incienso para ceremonias religiosas por su cualidad de producir resinas aromáticas de olores intensos y agradables (López, 2016). De hecho, la palabra copal, proviene del náhuatl copalli, que significa incienso. Por su parte, los cuajiotes se distinguen de los copales por presentar una corteza exfoliante, parecida a escamas (cuajiote deriva del náhuatl quauihxiotl, árbol leproso). Además de la elaboración de incienso, la madera de los copales se emplea para la fabricación de artesanías: los alebrijes en Oaxaca o las máscaras en Michoacán; mientras que a los cuajiotes se les atribuyen propiedades medicinales. Desafortunadamente, varias especies son vulnerables a la extinción debido al desmonte de los bosques tropicales secos para la expansión de ciudades, zonas agropecuarias y la extracción de madera para obtener leña y hacer construcciones.

¿Qué o quién dispersa las semillas de las burseras?

Los dispersores son variados (coyotes, ratones, tejones y primates), pero sus principales aliados son las aves (Greenberg et al., 1995; Stevenson et al., 2005). A pesar de la importancia de las burseras, apenas estamos empezando a conocer qué aves ayudan a la dispersión de sus semillas.

Hoy sabemos que más de una decena de especies ayudan a las burseras a moverse hacia otros sitios y, posteriormente, en su germinación (ver figura 1). Ejemplos de estas aves son dos especies endémicas, el Carpintero del Balsas (Melanerpes hypopolius) y el Carpitero enmascarado (Melanerpes chrysogenys); otras especies como el Papamoscas gritón (Myiarchus tyrannulus) se encuentran a lo largo del continente americano o como la Calandria de Baltimore (Icterus galbula), con una distribución más restringida en Norteamérica. Algunas aves son especies migratorias que vienen del norte y se dirigen a los bosques tropicales secos del sur durante el invierno, por ejemplo, el Vireo ojos blancos (Vireo griseus), convirtiendo el fruto de las burseras en un importante recurso alimenticio.

Figura 1. Algunas de las especies de aves que contribuyen a la dispersión de semillas de algunas especies de copales y cuajiotes (Bursera spp.). Se muestra el nombre común y el nombre científico de las aves.
* Especies endémicas de México.

¿Cómo se da el proceso de dispersión?

Para garantizar la dispersión de sus semillas, las burseras presentan frutos ovoides (drupas) con cubiertas relativamente duras, que al madurar se abren y exponen la semilla, que, a su vez, está rodeada por una estructura muy colorida, roja, naranja o amarilla, llamada pseudoarilo (Rzedowski y Guevara-Férer, 1992). Su función es atraer la atención de las aves para que consuman la semilla. Una vez que éstas ingieren el fruto completo o la semilla expuesta con el pseudoarilo, reciben como recompensa lípidos, proteínas, y azúcares, que les brindan energía y nutrientes básicos (Greenberg et al., 1995). Dentro del sistema digestivo del ave, debido a la acción de los ácidos gástricos, la semilla queda expuesta y su dura cubierta (pireno) es parcialmente disuelta y se ablanda, lo que facilita su germinación una vez que sea excretada. Todo este proceso se llama escarificación (ver figura 2).

Una peculiaridad de algunas especies de burseras es la producción de frutos sin semillas a partir de flores no polinizadas (Ramos-Ordoñez y Arizmendi, 2011). Esto tiene una doble función, por un lado, reduce el efecto de la depredación de los frutos viables (semillas consumidas y destruidas) y, por el otro, incrementa el éxito de la dispersión por parte de dispersores más efectivos, es decir, aquellas aves que logran esparcir las semillas a sitios óptimos y alejados de la planta madre (Ramos-Ordoñez y Arizmendi, 2011). Sin embargo, la producción de frutos sin semilla se puede deber a otras causas, como defectos genéticos o por el ataque de insectos que llevan al aborto del óvulo.

¿Qué tan lejos son llevadas las semillas?

Las aves aliadas de las burseras se pueden desplazar cientos y hasta miles de metros en pocos días, por lo tanto, las semillas pueden ser llevadas muy lejos de sus árboles madre. Esto explica en parte cómo las plantas están presentes a través de extensas áreas. No obstante, el éxito de la dispersión no sólo depende de la distancia que recorran las aves, sino también de que la semilla sea depositada en lugares de buena calidad para su germinación y desarrollo. Para ello, las semillas requieren condiciones óptimas de suelo, lo que depende del tipo de especie. De igual manera, las plantas jóvenes necesitan la protección de otras plantas para desarrollarse hasta que alcancen cierta altura e incrementen el grosor de su tronco. Las plantas protectoras son llamadas nodrizas y ofrecen sombra protectora contra los rayos del sol, así como un sustrato con mayor humedad y nutrientes (ver figura 2).

Figura 2. Las aves y la dispersión de las semillas de los copales y cuajiotes.
f1.
Bursera cuneata (Copal). Fotografía de Rico, Y., 2019.
f2.
Vireo griseus (Vireo Ojos Blancos). Fotografía de Marín, O., 2016.
f3.
Melanerpes chrysogenys (Carpintero Enmascarado). Fotografía de Marín, O., 2018.
f4.
Myiarchus tuberculifer (Papamoscas Triste).

¿Cómo cuidar la alianza entre las aves y las burseras?

Más allá de ofrecer alimento a las aves, las burseras tienen un papel central en amplias redes de interacciones biológicas, que apenas se están dando a conocer. Son árboles dominantes de los bosques tropicales secos y ofrecen una variedad de servicios relacionados con el ecosistema que benefician al ser humano, como la regulación de la temperatura, el reciclaje de nutrientes, la captación del agua y la protección contra la erosión del suelo. Por lo tanto, todos podemos ayudar a mantener la relación entre las burseras y las aves si trabajamos en mejorar los siguientes puntos:

  1. Garantizar la conservación y manejo sustentable de áreas conservadas de bosque tropical seco donde viven las burseras en México.
  2. Promover un crecimiento ordenado y consensuado de nuestras áreas agropecuarias y urbanas. Esto no sólo protegerá los hábitats de las burseras, sino también el hábitat de las aves que ayudan a la dispersión de sus semillas, y de otras especies de flora.
  3. Diseñar e implementar programas comunitarios para la propagación de especies nativas de copales y cuajiotes, permitiendo la restauración de los bosques y su uso sustentable.
  4. Realizar actividades de divulgación científica para comunicar la importancia ecológica de las burseras.
  5. Incrementar el apoyo para la investigación científica y participativa sobre el papel ecológico de la flora arbórea de México.

Referencias

  • Almazán-Núñez, R. C., Eguiarte, L. E., del Coro Arizmendi, M., & Corcuera, P. (2016). Myiarchus flycatchers are the primary seed dispersers of Bursera longipes in a Mexican dry forest. PeerJ, 4, e2126. doi: https://doi.org/10.7717/peerj.2126.
  • Art Mur (s.f.). Papamoscas Huí (Myiarchus nuttingi) [fotografía]. iNaturalist. Recuperado de: https://doi.org/10.7717/peerj.2126.
  • Dalling, J. W. (2002). Ecología de semillas. Ecología y conservación de bosques neotropicales, 345-375.
  • Foster, M. S. (2007). The potential of fruit trees to enhance converted habitats for migrating birds in southern Mexico. Bird Conservation International, 17(1), 45-61. doi: https://doi.org/10.1017/S0959270906000554.
  • Greenberg, R., Foster, M. S., y Marquez-Valdelamar, L. (1995). The role of the white-eyed vireo in the dispersal of Bursera fruit on the Yucatan Peninsula. Journal of Tropical Ecology, 11(4), 619-639. doi: https://doi.org/10.1017/S0266467400009184.
  • Greglasley (s.f.). Papamoscas Gritón (Myiarchus tyrannulus) [fotografía]. iNaturalist. Recuperado de: http://www.inaturalist.org/photos/223067.
  • Harleston, Cheryl. (s.f.). Titira Puerquito (Tityra semifasciata) [fotografía]. iNaturalist. Recuperado de: http://www.inaturalist.org/photos/2251278.
  • Greglasley (s.f.). Papamoscas Gritón (Myiarchus tyrannulus) [fotografía]. iNaturalist. Recuperado de: http://www.inaturalist.org/photos/2251278.
  • jalinage00 (s.f.). Vireo Ojos Blancos (Vireo griseus) [fotografía]. iNaturalist. Recuperado de: https://www.naturalista.mx/taxa/17408-Vireo-griseus.
  • López, A. (2016). Copal de Bursera bipinnata. Una resina mesoamericana de uso ritual. Trace, 70, 45-78. Recuperado de: https://journals.openedition.org/trace/2274.
  • Murray, D. R. (Ed.). (2012). Seed dispersal. Academic Press.
  • Ortiz-Pulido, R., & Rico-Gray, V. (2006). Seed dispersal of Bursera fagaroides (Burseraceae): the effect of linking environmental factors. The Southwestern Naturalist, 51(1), 11-22. doi: https://doi.org/10.1894/0038-4909(2006)51[11:SDOBFB]2.0.CO;2.
  • Ramos-Ordoñez, M. F., y Arizmendi, M. C. (2011). Parthenocarpy, attractiveness and seed predation by birds in Bursera morelensis. Journal of Arid Environments, 75(9), 757-762. doi: https://doi.org/10.1016/j.jaridenv.2011.04.013.
  • Rzedowski, J., y Guevara-Férer, F. (1992). Burseraceae. Flora del Bajío y de regiones adyacentes, fascículo 3: 1-46. Recuperado de: http://inecolbajio.inecol.mx/floradelbajio/documentos/fasciculos/ordinarios/Burseraceae%203.pdf.
  • Rzedowski, J., Medina, R. y Calderón, G. (2005). Inventario del conocimiento taxonómico, así como de la diversidad y del endemismo regionales de las especies mexicanas de Bursera (Burseraceae). Acta Botánica Mexicana, 70: 85-111. doi: https://doi.org/10.21829/abm70.2005.989.
  • Stevenson, P., Link, A. y Ramírez, B. (2005). Frugivory and Seed Fate in Bursera inversa (Burseraceae) at Tinigua Park, Colombia: Implications for Primate Conservation. Biotropica, 37, 431–438. doi: https://doi.org/10.1111/j.1744-7429.2005.00057.x.

Agradecimientos

Al Consejo de Ciencia y Tecnología (conacyt) por el financiamiento otorgado al proyecto de ciencia básica CB-2016-283237.



Recepción: 11/05/2019. Aprobación: 04/02/2020

Vol. 21, núm. 2 marzo-abril 2020

Anémonas, corales y medusas: los cnidarios y su importancia médica

José Fernando Lazcano Pérez, Zayil Salazar Campos y Humberto González-Márquez . Cita

Resumen

Los cnidarios son probablemente los organismos más bellos y excéntricos del océano. Desde hace millones de años, habitan todos los mares de la Tierra a diferentes profundidades y latitudes. Pero debido a que son venenosos y que el entrar en contacto con ellos puede producir ardor y dolor por un tiempo, pocas especies han sido consideradas de importancia médica para el ser humano.

Al igual que con otros animales venenosos, los científicos han estudiado sus toxinas para saber cómo funcionan y si podemos utilizarlas como agentes terapéuticos. Actualmente, existen trabajos de investigación que demuestran los efectos farmacológicos de algunas sustancias extraídas de su veneno, tales como combatir enfermedades virales, autoinmunes e, incluso, la gastritis. Por lo tanto, debemos luchar por la conservación de estos organismos no sólo debido a su potencial farmacológico, sino porque la gran mayoría se encuentran severamente amenazadas y representan la base de los ecosistemas marinos más biodiversos.
Palabras clave: cnidarios, veneno, toxinas, canales iónicos, terapéuticos.

Anemones, corals and jellyfishes: cnidarians and its medical importance

Abstract

Cnidarians are considered the most beautiful and eccentric organisms in the ocean. They have inhabited Earth’s seas for millions of years at many depths and latitudes. However, since they are venomous and contact with them might produce pain and burning sensation for a while, just a few species have been considered of medical importance for humans.

As with other venomous species, cnidarian toxins are studied in order to know their mechanisms of action and to find new therapeutic agents. Many research works describe some cnidarian compounds that have pharmacological properties against viral and autoimmune diseases, and even gastritis. Even more important, since many of this species are severely endangered, it is important to fight for its conservation, not only due to its pharmacological potential, but also because some species are the basis for marine ecosystems with greatest diversity.
Keywords: cnidarians, venom, toxins, ion channels, therapeutics.

Introducción

En 1901, el príncipe Alberto I de Mónaco, un apasionado estudioso del mar y fundador del Museo Oceanográfico de Mónaco, organizó un crucero científico a bordo del barco Princesa Alicia ii, al cual invitó a dos importantes científicos franceses, Paul Portier y Charles Robert Richet (Dworetzky, et al., 2002). Su objetivo era estudiar el contacto con los tentáculos de la fragata portuguesa, un organismo marino venenoso, para saber cómo causaba tanto dolor, parálisis, así como otros efectos patológicos en bañistas y buzos, que representaban un gran problema médico y afectaba el turismo de la zona.

Robert Richet se sintió bastante entusiasmado con el proyecto al que fue invitado por su afición al estudio de los venenos. Él aseguraba que, al igual que las vacunas de Pasteur, la inyección de pequeñas y repetidas dosis del veneno en perros y conejos podría generar inmunidad. Durante sus experimentos descubrió que al inyectar en sus perros una pequeña dosis no letal, ésta podía no tener ningún efecto o, si acaso, una comezón ligera y dificultad para respirar; pero que si pasado algún tiempo, alrededor de tres semanas después, les ponía una dosis aún menor, todos morían después de haber sufrido diversos síntomas. A este fenómeno se le dio el nombre de anafilaxia y después de diez años de intenso trabajo, el 11 de diciembre de 1913, Richet fue galardonado con el Premio Nobel de Medicina. Sus resultados fueron el primer paso para el análisis de los venenos de unos organismos muy peculiares llamados cnidarios, que habitan en todos los mares del planeta.

La clasificación o filo Cnidaria es un grupo de animales que comprende organismos acuáticos (en su mayoría marinos) de cuerpo gelatinoso, tentaculados, principalmente carnívoros. Poseen una estructura muy simple con simetría radial, es decir, una distribución equilibrada del cuerpo alrededor de un eje central. Algunos investigadores consideran que aparecieron hace aproximadamente 1,000 millones de años, convirtiéndose en el segundo grupo más antiguo del reino animal, después de las esponjas. Existen casi 11,000 especies diferentes (Collins, 2009) y quizá se traten de los organismos más coloridos y excéntricos del ambiente marino (ver imagen 1).

Imagen 1. Algunos cnidarios representativos. A) Cassiopea xamachana o medusa invertida (7 cm), foto: Paolo Urbano Del Águila. B) Acropora palmata (un coral). C) Bunodosoma cavernatum, una anémona verdadera, compartiendo roca con una colonia de 4 cm de Zoanthus sociatus (zoantideo), foto: Francisco Ibarra Canales.

Dentro de este grupo podemos encontrar a las medusas, anémonas, corales, zoantideos, abanicos de mar, entre otros. Todos poseen tentáculos u otras estructuras cubiertas de células llamadas cnidocitos (de ahí el nombre cnidario que significa ortiga en griego), que secretan unos orgánulos urticantes muy curiosos llamados cnidocistos.

Los cnidocistos se clasifican en tres tipos: los nematocistos, presentes en todos los cnidarios; los espirocistos, sólo en los clasificados como Anthozoa; y los pticocistos, que pertenecen únicamente a los animales de la subclase Ceriantharia, nombrados también anémonas tubícolas. Los nematocistos son dispositivos en forma de cápsula con una especie de arpón que se dispara al tocar a una presa o depredador y penetra en él inyectando veneno (ver imagen 2). Todos los cnidarios poseen nematocistos y es lo que distingue al filo Cnidaria de todos los demás (Fautin, 2009).

Imagen 2. Los nematocistos son considerados las estructuras venenosas más complejas de la naturaleza. Su descarga es tan potente que puede penetrar profundamente la piel de una presa en menos de tres milisegundos, e inyectar el veneno para paralizar y matar en minutos o hasta en segundos. Escala= 20µm. Foto: Dr. Ricardo González Muñoz.

Dentro de los nematocistos se produce y almacena el veneno, una mezcla compleja de sustancias de naturaleza química muy variada, tales como péptidos, proteínas, fosfolipasas (enzimas capaces de degradar los fosfolípidos de las membranas de las células), glicoproteínas, esteroles, carbohidratos y aminas bioactivas, como la histamina y la serotonina. Ya que casi todos los cnidarios son venosos, representan una fuente muy amplia para el estudio de las toxinas de animales.

El contacto con los tentáculos de los cnidarios puede afectar, primero, a la piel produciendo edema, necrosis, dermatitis y urticaria. Posteriormente, el veneno viaja a través del sistema linfático y los vasos capilares, y puede afectar el corazón o el sistema nervioso central. En casos muy severos genera un dolor muy intenso, neuropatías, parálisis, dificultad respiratoria, síntomas oftalmológicos, mononeuritis múltiple y, en ocasiones, puede causar la muerte.

Los cnidarios también tienen la capacidad de almacenar sustancias tóxicas que no son producidas por ellos, sino por organismos con los que viven en simbiosis, una relación que les beneficia mutuamente. Tal vez el caso más conocido sea el de la palitoxina, la segunda toxina no proteínica más potente que se conoce en la Tierra, descubierta en 1971 en un tipo de cnidarios del orden Zoantidea (clase Anthozoa, género Palythoa). Su estructura química es tan complicada que no fue sino hasta once años después que se pudo elucidar (ver imagen 3). Los zoantideos son animales muy valiosos para los aficionados a los acuarios marinos, no en vano se reportan muchos casos de envenenamiento por contacto con ellos en la literatura médica.

Imagen 3. Estructura química de la palitoxina, una de las toxinas más potentes que se conocen y que fue descubierta en zoantideos del género Palythoa. Actualmente sabemos que la producen dinoflagelados simbiontes del género Ostreopsis.

¿Cómo se alimentan los cnidarios?

Los cnidarios son animales principalmente carnívoros, aunque también pueden ser considerados polífagos oportunistas, es decir, con ayuda de sus tentáculos atrapan crustáceos y peces, a los que les inyectan un veneno, paralizándolos al instante para luego llevarlos a su cavidad oral en donde secretan enzimas que inician el proceso de digestión. Sin embargo, muchos cnidarios han evolucionado en simbiosis con organismos unicelulares fotosintéticos llamados dinoflagelados, principalmente del género Symbiodinium. Esta relación provee a los dinoflagelados de un hogar seguro donde no pueden ser depredados, al interior de la epidermis de los cnidarios; a cambio de ello, fotosintetizan y ofrecen otra alternativa de alimentación al cnidario, dándoles los nutrientes necesarios para vivir.

Muchas medusas, anémonas y zoantideos tienen una asociación simbiótica, pero una de más conocidas y estudiadas es la de los corales. Los arrecifes de coral están formados por una clase de cnidarios llamados “corales escleractinios” (del griego scleros, piedra). Estos animales producen enormes cantidades de carbonato de calcio, que se agregan en los arrecifes de coral, considerados unos de los ecosistemas más ricos del planeta en términos de diversidad biológica. La relación coral-simbionte depende mucho de varios factores como la luz, la profundidad, el pH del agua y la temperatura del mar. Por ello, el calentamiento global ha afectado seriamente estos ecosistemas en todo el mundo, el aumento de la temperatura del agua ocasiona que los corales expulsen a los simbiontes de sus tejidos, quedándose sin alimento y ocasionando que mueran.

¿Cómo actúa el veneno de los cnidarios?

Como ya hemos mencionado, el veneno de estos animales consiste en una mezcla de varias sustancias con propiedades diferentes, de forma que cada una afecta de cierta manera al organismo y, en conjunto, logran intoxicar a la presa o depredador. Entre estas sustancias se encuentran comúnmente unas proteínas llamadas fosfolipasas, las cuales destruyen los lípidos de las membranas celulares de los primeros tejidos con los que entra en contacto el veneno, lo que abre paso a las neurotoxinas. Estas proteínas, más pequeñas que las fosfolipasas, dañan a otras moléculas insertadas en las membranas de las células, en este caso nerviosas, conocidas como canales iónicos.

A su vez, los canales iónicos son proteínas que atraviesan la membrana de algunas células y contienen poros llenos de agua que permiten el flujo de iones a través de ellas. Según la forma en la que se activan pueden ser: a) regulados por voltaje, es decir, requieren de un potencial de acción para activarse; b) activados por un ligando, que se abren o cierran cuando una molécula específica se une a ellos; o c) mecanosensibles, se activan por la acción de un estímulo mecánico.

Dichos canales participan en procesos fundamentales como la transmisión de las señales nerviosas, la secreción de hormonas y neurotransmisores, la regulación de la presión sanguínea, entre otros (Martínez-Rosas, 2004). Además, conducen iones de sodio (Na+), potasio (K+) y calcio (Ca2+). Cuando las neurotoxinas del veneno entran en contacto con los canales iónicos, los bloquean o provocan su activación prolongada. Esto significa que pueden impedir completamente el paso de ciertos iones u causar su entrada sin control en momentos cruciales para la célula. Las consecuencias pueden ser fatales, pues las señales nerviosas no llegan a los músculos, generando una parálisis que puede llevar a un paro respiratorio y/o daños en el corazón.

Son precisamente estas actividades biológicas, como romper células o interrumpir la entrada y salida de iones, lo que hace interesante el estudio de los componentes en el veneno de los cnidarios, puesto que si logramos controlar su efecto encontraremos la oportunidad de utilizarlas para combatir ciertos padecimientos.

Propiedades farmacológicas

Comparadas con las de los animales terrestres, como los escorpiones, arañas y serpientes, las sustancias que producen los cnidarios han sido poco estudiadas debido a la dificultad que representa recolectarlos y extraer sus toxinas. Las serpientes o las tarántulas pueden ordeñarse de forma relativamente fácil y es posible obtener una cantidad de veneno suficiente para su análisis. Esto es imposible con los cnidarios, lo cual ha limitado la investigación farmacológica con compuestos derivados de ellos. No obstante, existen varios estudios que han descubierto sustancias con aplicaciones farmacológicas de las que hablaremos brevemente. Comenzaremos por aquellas que presentan la actividad biológica más variada.

De todas las especies de cnidarios que se conocen hasta ahora, los corales blandos (clase Anthozoa, subclase Octocorallia, orden Alcyonacea) han sido la fuente de compuestos más diversa y relevante. Se les denomina así porque, a diferencia de los corales duros, no generan un esqueleto de carbonato de calcio, por tanto, no pueden formar arrecifes, aunque sí habitan en ellos (ver imagen 4). A partir de los corales blandos se han aislado terpenoides, compuestos con características antiinflamatorias, antitumorales, anti-virus de inmunodeficiencia humana (vih), antimaláricas, antituberculosas y contra úlcera gástrica (Rocha et al., 2011).

Sustancias con actividad antiinflamatoria como la pseudopterosina, la eleutherobina y la sarcodictina ya están en fase preclínica y podrían ser utilizadas como antipiréticos (capaces de bajar la fiebre) (Mariottini, G.L., 2017). Por otro lado, hay una mayor la variedad de compuestos terpénicos, los cuales tienen actividad contra líneas celulares cancerosas, como cáncer de mama y de pulmón. En algunos corales blandos y en medusas (clase Scyphozoa) también se han localizado sustancias que bloquean la entrada del vih a las células T, proporcionando una nueva fuente de antirretrovirales.

Imagen 4. Corales blandos. Se les denomina así porque no producen un esqueleto calcáreo y no pueden formar arrecifes, sin embargo, son parte importante de estos. En la imagen podemos apreciar un abanico de mar (gorgonáceo), que puede medir hasta 60 cm, organismos de los cuales se han aislado compuestos con actividad biológica importante contra varias enfermedades como el cáncer o la infección por VIH (foto: Dr. Israel Cruz Ortega).

Otro grupo de cnidarios ampliamente estudiado son las anémonas (Lazcano-Pérez et al., 2016). Sabemos que sintetizan péptidos de bajo peso molecular, que afectan sobre todo los canales iónicos de sodio y de potasio regulados por voltaje, pero recientemente se descubrió que, de igual modo, podrían afectar los canales de calcio (Lazcano-Pérez et al., 2016). Todos estos péptidos son toxinas letales cuando se administran a insectos, crustáceos o ciertos mamíferos como los ratones (ver imagen 5). Sin embargo, modificadas químicamente o en dosis adecuadas pueden emplearse con propósitos médicos. Por ejemplo, una toxina aislada de la anémona Stichodactyla helianthus bloquea los canales iónicos permeables a potasio KV1.3, implicados en la activación y proliferación de los linfocitos T humanos. Si mediante esta toxina es viable bloquear a estos linfocitos, entonces, se podría aprovechar para combatir enfermedades autoinmunes, por lo que ahora se encuentra en fase clínica para tratar la esclerosis múltiple (Chi et al., 2011).

Ya que los canales iónicos están implicados en muchos procesos fisiológicos, así como en enfermedades y padecimientos como la leucemia, la esclerosis múltiple, la obesidad o hasta la infertilidad, resulta factible decir que, al encontrar la molécula adecuada para regularlos, se avanzará en el diseño de nuevos medicamentos para tratar éstas y otras patologías.

Imagen 5. A) Palythoa caribaeorum, un zoantideo muy abundante en arrecifes mexicanos (foto: Dr. Ricardo González Muñoz). Las colonias alcanzan extensiones de varios metros cuadrados en un arrecife. B) Estructura química de una neurotoxina, aislada de P. caribaeorum, que afecta canales de sodio en neuronas de rata.

¿Qué hacer si nos pica una medusa?

Hay una muy baja probabilidad de que una persona se encuentre con una anémona o un coral, poca gente incursiona en los arrecifes. Aunque sí ocurren muchos casos de turistas que han tenido malos ratos al tocar los hermosos corales de fuego y las anémonas, para satisfacer su curiosidad. Asimismo, estos animales son organismos sésiles, crecen adheridos a un sustrato y nunca se desplazan, se refugian entre las rocas y pueden pasar desapercibidos.

Por otro lado, toparse con una medusa sucede frecuentemente, debido a que nadan en las mismas zonas que los turistas. Los cnidarios más populares por sus efectos nocivos sobre las personas son las medusas conocidas como aguamalas. Estas criaturas suelen rondar las playas, principalmente durante el verano, y el simple roce con sus tentáculos produce enrojecimiento en la piel, comezón y ardor intenso. Como muchas son transparentes, resulta casi imposible verlas mientras nadamos; sólo hasta que sentimos el ardor y vemos la dermatitis en la zona de contacto nos daremos cuenta que fuimos tocados por una. Existe la creencia de que al orinar sobre la zona dañada estos efectos disminuyen, mas esto aún no está comprobado. Lo que sí sabemos es que aplicar vinagre y después enjuagarse con agua de mar inactiva los nematocistos que no han sido descargados sobre la piel. Rara vez anticipamos picaduras de medusas, por lo que no es común contar con una botella de vinagre; en ese caso, el refresco de cola puede servir por su bajo pH. Tampoco se recomienda lavar la zona afectada con agua dulce antes de haber realizado el enjuague con agua marina, dado que el agua corriente puede activar los nematocistos que continúan adheridos a la piel. Los síntomas leves terminan después de varios minutos y si persisten, se puede utilizar una crema con hidrocortisona.

En México, no hay especies de medusas que impliquen un riesgo grave para la salud; sin embargo, en Australia y el sureste de Asia habitan especies que sí lo representan. Por ejemplo, la Avispa de mar (Chironex fleckeri), una medusa que abunda durante el verano en el norte de Australia, y que es considerada el animal más venenoso del mundo, puede matar a una persona en cuestión de minutos. También, el contacto con otras medusas produce el llamado “Síndrome Irukandji”, el cual consiste en síntomas muy severos como dolor fuerte en la espalda baja, calambres intensos en las extremidades, abdomen y pecho, sudoración, ansiedad, náusea, vómito, dolor de cabeza, hipertensión, edema pulmonar, etcétera, y en los casos más severos puede producir la muerte.

Debe señalarse que las medusas no son agresivas. Lo más probable es que ni siquiera les importe que estemos ahí, por tanto, si vemos una nadando cerca de nosotros, lo mejor será alejarnos de ella y evitarla, seguramente no tendrá ninguna intención de perseguirnos.

Conclusiones

No cabe duda que los cnidarios forman parte de los animales más curiosos y fascinantes del mar. Posiblemente la mayoría de los que hemos ido a la playa hemos tenido algún contacto con medusas o corales, desde simplemente observarlos, hasta haberlos tocado a propósito o accidentalmente, de forma que quizá hemos experimentado las dolorosas consecuencias. Aun así, no dejan de ser animales fascinantes y en los últimos años se ha vislumbrado que podrían ser la fuente de sustancias con propiedades terapéuticas novedosas como lo han sido muchos otros organismos venenosos. Aunado a esto, su estudio y conservación tienen una vital importancia, ya que los arrecifes coralinos son uno de los ecosistemas más diversos del planeta y están severamente amenazados por la acción del hombre.

Referencias

  • Chi, V., Pennington, M. W., Norton, R. S., Tarcha, E. J., Londono, L. M., Sims-Fahey, B., Upadhyay S.K., Lakey J.T., Iadonato S., Wulff H., Chandy K.G. & Beeton, C. (2012). Development of a sea anemone toxin as an immunomodulator for therapy of autoimmune diseases. Toxicon, 59(4), 529-546. doi: https://doi.org/10.1016/j.toxicon.2011.07.016.
  • Collins, A. G. (2009). Recent insights into cnidarian phylogeny. Smithsonian contributions to the marine sciences, 38, 139-143.
  • Dworetzky, M., Cohen, S., Cohen, S. G., & Zelaya-Quesada, M. (2002). Portier, Richet, and the discovery of anaphylaxis: a centennial. Journal of Allergy and Clinical Immunology, 110(2), 331. doi: https://doi.org/10.1016/S0091-6749(02)70118-8.
  • Fautin, D. G. (2009). Structural diversity, systematics, and evolution of cnidae. Toxicon, 54(8), 1054-1064. doi: https://doi.org/10.1016/j.toxicon.2009.02.024.
  • Lazcano-Pérez, F., Castro, H., Arenas, I., García, D. E., González-Muñoz, R., & Arreguín-Espinosa, R. (2016). Activity of Palythoa caribaeorum Venom on Voltage-Gated Ion Channels in Mammalian Superior Cervical Ganglion Neurons. Toxins, 8(5), 135. doi: https://doi.org/10.3390/toxins8050135.
  • Lazcano-Pérez, F., Hernández-Guzmán, U., Sánchez-Rodríguez, J., & Arreguín-Espinosa, R. (2016). Cnidarian neurotoxic peptides affecting central nervous system targets. Central Nervous System Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Central Nervous System Agents), 16(3), 173-182. doi: https://doi.org/10.2174/1871524915666150722120915.
  • Real Academia Española (2019). Filo. En Diccionario de la lengua española [23.ª ed., versión 23.3 en línea]. Real Academia Española. Recuperado de: https://dle.rae.es.
  • Rosas, M. M. (2004). Los canales iónicos: la biología y patología. Archivos de cardiología de México, 74(s2), 205-210. Recuperado de: https://www.medigraphic.com/pdfs/archi/ac-2004/acs042o.pdf.


Recepción: 26/09/2018. Aprobación: 14/11/2019

Vol. 21, núm. 2 marzo-abril 2020

¿Cultivo de peces marinos? Hablemos de larvicultura en estanques

Sergio Escárcega Rodríguez Cita

Resumen

En virtud de su vasto potencial biológico y adaptabilidad en agua marina, salobre y dulce, los eurihalinos —seres acuáticos capaces de vivir en un amplio rango de salinidad— podrían representar un nuevo rumbo en el cultivo de organismos acuáticos en México, con el desarrollo y expansión del cultivo de peces marinos tropicales, soportado en las especies eurihalinas de nuestros litorales.

Al momento, el cultivo de peces marinos en México se encuentra en etapa experimental, bajo esquemas de cultivo de alta tecnificación, con la producción en paralelo de alimento vivo y alcances productivos limitados. Aquí se presenta como alternativa un modelo de cultivo en estanques, que permite el manejo de grandes cantidades de larvas, con hasta 60% de sobrevivencia. La clave del éxito radica en acoplar la preparación de los estanques con el momento en que las larvas tienen dos días de nacidas, una opción que permitiría alcanzar la escala productiva necesaria para detonar nuevas cadenas de valoren sus distintos eslabones: producción primaria, procesamiento, distribución y comercialización, de alto impacto socioeconómico.
Palabras clave: piscicultura marina, larvicultura en estanques, manejo de la sucesión del zooplancton, producción masiva de crías de peces marinos, eurihalinos.

Larviculture of marine fish in ponds: An affordable option to massify fingerlings production

Abstract

By virtue of its vast biological potential and adaptability in marine, brackish and fresh water, euryhaline —aquatic organisms capable of living in a wide range of salinities— could mean a new direction in the farming of aquatic organisms in Mexico, by the development and growth of a tropical marine fish farming supported by the eurihaline species of our coastlines.

At the moment, larval cultivation with marine fish in Mexico is in an experimental stage, under high-tech farming schemes, with parallel production of live food and limited productive reach. Here, we present a pond culture model as an alternative that allows the handling of large quantities of larvae, with survival margins that can reach up to 60%. The key to success lies in the coupling of ponds preparation with the moment that two-day hatching larvae are available. An option that would allow to reach the necessary productive scale to detonate new value chains in their different links: primary production, processing, distribution and marketing.
Keywords: marine fish farming, larviculture in ponds, management of the succession of zooplankton, massif production of marine fish fingerlings, euryhaline organisms.

Introducción

La acuicultura parece un término extraño y alejado de nosotros, pero en realidad está presente en el salmón que comemos, en los pescados del supermercado, en las algas que adornan el sushi. Se trata de una práctica milenaria que cultiva organismos acuáticos como moluscos, peces, algas, pulpos, y que interviene en la crianza de estas especies para aumentar su producción. A la práctica que se dedica exclusivamente a los peces se le denomina piscicultura y suele dividirse de acuerdo con el tipo de agua donde residen los peces (marina, dulce o salobre, punto medio de salinidad entre ambas) y con la especie a la que pertenecen. Por tanto, la producción de larvas de peces, también llamada larvicultura, constituye una etapa clave para esta industria.

El tema de la seguridad alimentaria es un asunto de gran importancia. En la actualidad somos más de 7 mil millones de seres humanos en el planeta, aunque se espera que para la mitad de este siglo la cifra supere los 9 mil millones (Food and Agriculture Organization [fao], 2016). La demanda de alimentos se incrementará, así como la presión sobre los recursos naturales, por lo que se deberán prever opciones para atender estas eventualidades; además de combatir la desnutrición, potenciar el desarrollo, reducir la pobreza y reforzar los sistemas alternativos de producción ambientalmente sostenibles.

México constituye una nación con una economía emergente, donde resulta necesario diversificar las opciones productivas para avanzar en la conservación del capital natural, la autosuficiencia alimentaria, la generación de empleos y el desarrollo regional. En este sentido, el potencial de crecimiento de la piscicultura marina es amplio si consideramos la disponibilidad de más de 11 mil kilómetros de litorales y la existencia de una fauna tropical diversa (Escárcega, 2005).

Un nuevo rumbo en la producción nacional acuícola podrá darse con el desarrollo de una piscicultura marina tropical soportada en las especies eurihalinas de peces de nuestros litorales, pues toleran amplias variaciones de salinidad en el agua, poseen un gran potencial biológico y versatilidad de cultivo.

Entre ellos, se destacan los robalos (Centropomidae) por sus altos índices de fecundidad (615 mil óvulos/kg 1 ), resistencia al manejo, tolerancia al hacinamiento y a condiciones cambiantes en la calidad del agua, rápido crecimiento (Álvarez-Lajonchére & Tsuzuki, 2008) y el más elevado valor comercial de pescados y mariscos en México (conapesca, 2014). También, para ilustrar este aspecto, en la región del Pacífico Sur de México (Pacífico Transicional Mexicano) se perfilan, además de los robalos prieto (Centropomus nigrescens) y plateado (Centropomus viridis), otras especies con aptitud acuícola como el mero guasa (Epinephelus itajara), el guachinango (Lutjanus peru), el pámpano plateado (Trachinotus kennedyi) y la corvina blanca (Cynoscion albus) (Escárcega-Rodríguez, 2018).

Al manejar los procedimientos adecuados en la reproducción y crianza (ver figura 1) dichas cualidades permiten obtener crías a gran escala (decenas de millones por año) para los sistemas de engorda en sus distintos niveles (extensivo, semi-intensivo e intensivo) y para los sistemas de cultivo como estanques, jaulas, canales y encierros. En consecuencia, resulta posible consolidar nuevas cadenas de valor con especies que presentan un gran valor nutricional y una importante demanda en el mercado. Este es precisamente el propósito central del documento: dar a conocer una nueva forma de aumentar la producción actual de crías peces marinos a nivel comercial.

Figura 1. Momento culminante del desove en el sistema acoplado de desove e incubación (Escárcega, 2005).

Los retos para masificar la producción de crías

La oportunidad de masificar la producción de larvas de peces marinos en estadio de alimentación —cuando han agotado sus reservas e inician su alimentación natural— exige el perfeccionamiento de tecnologías para la larvicultura y la crianza capaces de garantizar el abasto de crías y juveniles requeridos en los sistemas de engorda.

Al respecto, en México se han aplicado técnicas para la reproducción inducida y la larvicultura de robalos, pargos (Lutjanidae) y otras especies a nivel piloto-experimental. De esta manera, en la Unidad Académica Sisal-unam, Yucatán, se realizado un importante trabajo con el robalo blanco del Atlántico (Centropomus undecimalis), la corvina pinta (Cynoscion nebulosus) y el pargo canané (Ocyurus chrysurus). En el ciad-Unidad Mazatlán se han hecho análisis con el pargo flamenco (Álvarez-Lajonchère et al., 2011; Abdo-de la Parra et al., 2015) y el botete diana (Abdo-de la Parra et al., 2013); y de manera reciente con el robalo plateado del Pacífico, Centropomus viridis (Ibarra-Castro et al., 2017). A partir de dichos estudios se han definido modelos experimentales para el cultivo de reproductores, desove inducido, así como para la larvicultura y la producción de crías en pequeños contenedores bajo esquemas de alto control (recirculación) con el suministro de alimento vivo, cultivado en paralelo también a nivel de laboratorio.

A pesar del indudable valor del conocimiento generado, los alcances logrados hasta el momento son limitados 2 y distan aun de alcanzar la escala productiva necesaria para impactar en el mercado económico.

¿Cómo avanzar en la atención de este desafío?

Desde hace décadas, China ha desarrollado modelos productivos como el sistema acoplado de desove e incubación, el cual responde con eficacia al vasto potencial biológico de distintos peces de relevancia alimentaria y comercial, incrementando la productividad en el desove, la incubación y la producción de larvas (ver figura 2).

Figura 2. Esquema del funcionamiento del sistema acoplado de desove e incubación con paso automático del huevo por vasos comunicantes (Escárcega, 2005).

De igual manera, para la generación de crías a gran escala, se han desarrollado esquemas de cultivo larval en sistemas abiertos tales como los estanques, que permiten el manejo de grandes cantidades de larvas, con márgenes de sobrevivencia que alcanzan hasta 60% para la etapa de larva en estadio de alimentación a cría de 3 cm (Horváth, Tamás y Coche, 1986). En el caso de los peces marinos, países como Tailandia y Australia manejan con éxito esta alternativa para la producción comercial de crías del robalo del Indo pacífico, Lates calcarifer (Kungvankij et al., 1985).

Cultivo larval extensivo. El encuentro de dos rutas productivas

El problema con la eficacia del cultivo larval extensivo estriba en coordinar la preparación de los estanques de crianza con el momento en que las larvas se encuentran en estadio de alimentación, a las 48 horas de nacidas, pues en ese momento han agotado sus reservas y se encuentran aptas para comer pequeñas presas vivas. El estanque debe tener abundancia de rotíferos 3 y menor proporción de copépodos 4 y otros componentes del zooplancton que en esta etapa pueden ser depredadores o competidores alimentarios.

Fundamentos del modelo 5

Cuando se emplean estanques de tierra para la larvicultura, sin importar el tipo de agua, las larvas se integran desde un inicio en la cadena alimentaria que se establece en ellos.

La fotosíntesis contribuye a la producción de materia vegetal en los estanques, que sirve de base para el desarrollo del zooplancton.

Así, las larvas de los peces se alimentan vorazmente de él, escogiendo aquellos organismos cuya talla se ajusta a las pequeñas dimensiones de su boca (ver figura 3), como algunos rotíferos y los nauplios. 6

Figura 3. Tamaños adecuados en el zooplancton (rotíferos y nauplios) en la siembra inicial de larvas de peces marinos eurihalinos en estanques (Horváth, Tamás y Coche, 1986).

Preparación de la estanquería para la recepción de las larvas

De la misma forma en que se limpia la casa antes de que lleguen invitados, se necesita una preparación especial para alistar el ambiente para recibir a las larvas y asegurar una producción exitosa. Por supuesto, las cantidades se podrán calibrar en cada sitio conforme a los resultados que se vayan logrado en la proliferación del zooplancton. Los pasos son los siguientes:

  1. Los estanques —relativamente pequeños (de 0.01 a 1.0 ha), con una profundidad media de 1.0 m— requieren pasar por un período de secado y exposición al sol.
  2. Debe arrancarse toda la vegetación del fondo y quemarse. Luego se aplica cal viva (150 kg/ha) sobre el fondo del estanque para esterilizarlo y mejorar la estructura del suelo.
  3. Se agrega fertilizante orgánico (estiércol de ganado vacuno o porcino, por ejemplo), 3-5 ton/ha, para asegurar un buen desarrollo de zooplancton, alimento de las larvas.
  4. Posteriormente, el estanque debe ser llenado a la mitad de su capacidad.

Tratamiento selectivo opcional: el manejo de la sucesión natural del zooplancton

Una vez que el estanque se ha llenado a la mitad, se trata con el producto Crustabay 7 (metrifonato 90%) a una dosis de 1.0 mg/L para eliminar selectivamente a los cladóceros y copépodos, 8 que son competidores alimentarios o depredadores de las larvas de los peces, lo que favorece la proliferación de rotíferos. Conforme van reapareciendo, los cladóceros y copépodos dejan de ser problema para los peces y se vuelven una fuente de alimento.

En las primeras pruebas se podrán sembrar las larvas en los estanques a una tasa de 740,000 unidades/ha, como se hace en el cultivo larval extensivo con la corvina ocelada del Atlántico (Sciaenops ocellatus) (fao, 2005-2018).

Acoplamiento de fases: la clave del éxito

En la figura 4 se presenta un modelo de articulación de ambos procesos: la disponibilidad de larvas de 48 horas cuando se da la eclosión, la salida del embrión del huevo, con el momento de máxima abundancia de rotíferos. Como ha sido mencionado, basado las características de cada especie y del sitio, se deberán determinar los tiempos precisos para alcanzar los estadios señalados. Este esquema toma como ejemplo el caso del robalo, donde el punto de encuentro de las dos vías para la siembra de las larvas será en el séptimo día. Se puede apreciar que la esencia de esta ruta productiva recae en el dominio tecnológico de la reproducción de las especies objetivo, disponiendo de los lotes de larvas en estadio de alimentación de forma segura y en los momentos esperados.

Figura 4. Cronograma de acoplamiento de las fases para la siembra de las larvas de robalo en los estanques de crianza. Recuperado de Escárcega (2008).

Conclusiones y perspectivas

La piscicultura marina constituye una alternativa al deterioro que enfrentan distintas pesquerías en el planeta y a la necesidad creciente de impulsar opciones a fin de aumentar la oferta de alimentos y el desarrollo regional sustentable ante el crecimiento poblacional esperado a futuro. Los litorales de México, en su franja tropical, incluyen peces marinos de alto valor comercial con potencial acuícola, se destacan en este rubro los peces eurihalinos (Escárcega-Rodríguez, 2018).

En virtud de lo anterior, resulta indispensable atender uno de los aspectos sustantivos para potenciar su aprovechamiento: la producción de crías a escala comercial; por lo que se considera importante aplicar el modelo de producción alternativo que aquí se presenta, pues abre la posibilidad de poder manejar enormes cantidades de larvas con mayores márgenes de sobrevivencia.

Referencias

  • Abdo-de la Parra, María Isabel, Rodríguez-Ibarra, L. Estela, García-Aguilar, Noemí, Velasco-Blanco, Gabriela, & Ibarra-Castro, Leonardo. (2013). Biotecnología para la producción masiva de juveniles del botete diana Sphoeroides annulatus: inducción hormonal y cultivo larvario. Revista de biología marina y oceanografía, 48(3), 409-420. doi: https://dx.doi.org/10.4067/S0718-19572013000300001.
  • Abdo-de la Parra, M. I., Rodríguez-Ibarra, L. E., Rodríguez-Montes de Oca, G., Velasco-Blanco, G. & Ibarra-Castro L. (2015). Estado actual del cultivo de larvas del pargo flamenco (Lutjanus guttatus). Latin American Journal of Aquatic Research, 43(3): 415-423. Recuperado de: https://scielo.conicyt.cl/pdf/lajar/v43n3/art03.pdf.
  • Álvarez-Lajonchère, L. S. y M. Tsuzuki Y. (2008). A review of methods for Centropomus spp. (snooks) aquaculture and recommendations for establishment of their culture in Latin America. Aquaculture Research, 39(7): 684-700.
  • Álvarez-Lajonchère, L., Abdo de la Parra, M. I., Rodríguez-Ibarra, L. E. & García-Ortega, A. (2011). Reproducción controlada. En L. Álvarez-Lajonchere & A. Puello-Cruz (Eds.), El pargo flamenco: Lutjanus guttatus, producción controlada de huevos, larvas y juveniles (pp. 25-58). Clave Editorial. Recuperado de: http://aquaticcommons.org/14961/1/pargo_flamenco_libro.pdf.
  • Caballero-Chávez, V. (2011). Reproducción y fecundidad del robalo blanco (Centropomus undecimalis) en el suroeste de Campeche. Ciencia Pesquera,19(1), 35-46.
  • conapesca (2014). Anuario Estadístico de Pesca 2014. Comisión Nacional de Acuacultura y Pesca. México.
  • Escárcega-Rodríguez, S. (1996). Evaluación de un sistema acoplado de desove e incubación para la reproducción controlada de la carpa herbívora (Ctenopharyngodon idellus). Ciencia Pesquera, 13, 87-93. Recuperado de: https://www.inapesca.gob.mx/portal/documentos/publicaciones/cienciapesquera/CP13/cp13-13.pdf.
  • Escárcega-Rodríguez, S. (2005). El robalo. Avances biotecnológicos para su crianza. agt Editor.
  • Escárcega-Rodríguez, S. (2008). Guía práctica para el cultivo del robalo prieto del Pacífico Oriental Centropomus nigrescens (Günther, 1864) [documento de trabajo de la Maestría en Limnología y Acuicultura, inirena-umsnh].
  • Escárcega-Rodríguez, S. (2018). Preselección de especies para la piscicultura marina en el Pacífico Sur de México. CIENCIA Ergo-Sum, 25(1). doi: https://doi.org/10.30878/ces.v25n1a6.
  • Food and Agriculture Organization (fao). (s.f.a). 10. Nutrición y alimentación de los peces. Recuperado de: http://www.fao.org/tempref/FI/CDrom/FAO_Training/FAO_Training/General/x6709s/x6709s10.htm.
  • Food and Agriculture Organization (fao). (s.f.b). 6. Fertilización de los estanques piscícolas. Recuperado de: http://www.fao.org/tempref/FI/CDrom/FAO_Training/FAO_Training/General/x6709s/x6709s06.htm.
  • Food and Agriculture Organization (fao). (2005-2018). Cultured Aquatic Species Information Programme Sciaenops ocellatus. Programa de información de especies acuáticas [texto de Cynthia K. y Faulk, A.]. Recuperado de: http://www.fao.org/fishery/culturedspecies/Sciaenops_ocellatus/es.
  • Food and Agriculture Organization (fao) (2016). El estado mundial de la pesca y la acuicultura 2016. Contribución a la seguridad alimentaria y la nutrición para todos. Recuperado de: http://www.fao.org/3/a-i5555s.pdf.
  • Horváth, L., Tamás, G., y Coche, A. G. (1986). La carpa común. Parte 2. Producción masiva de alevines y jaramugos. Colecc. fao: Capacitación, 9, 83.
  • Ibarra-Castro, L, Navarro-Flores, J., Sánchez-Téllez, J. L., Martínez-Brown, J. M., Ochoa-Bojórquez, L. A. and Rojo-Cebreros, Á. H. (2017). Hatchery Production of Pacific White Snook at ciad-Unity Mazatlan, Mexico. World Aquaculture, September: 25-29. Recuperado de: https://www.researchgate.net/publication/320106950_Hatchery_Production_of_Pacific_White_Snook_at_CIAD-Unity_Mazatlan_Mexico.
  • Johnson, G. David. (1984). Percoidei: development and relationships. En Moser, H. G. (Ed.), Ontogeny and Systematics of Fishes (pp. 464-469). Allen Press Inc.
  • Kungvankij P., Tiro, L. B. Jr, Pudadera, B. J. Jr & Potests, I. O. (1985). Training Manual Biology and Culture of Sea Bass (Lates calcarifer). Network of Aquaculture Centres in Asia.
  • Tucker, J. W. (1987). Snook and tarpon snook culture and preliminary evaluation for commercial farming. The progressive Fish-Culturist, 49, 49-57.


Recepción: 08/01/2019. Aprobación: 24/07/2019.

Show Buttons
Hide Buttons

Revista Digital Universitaria Publicación bimestral Vol. 18, Núm. 6julio-agosto 2017 ISSN: 1607 - 6079