Señales de humo bajo la tierra: el lenguaje secreto de plantas y microbios
DOI:
https://doi.org/10.22201/ceide.16076079e.2026.27.1.9Palabras clave:
comunicación planta-microbio, rizosfera, microbiología del suelo, agricultura sostenible, señalización química vegetalResumen
Bajo nuestros pies late una red social secreta. Mucho antes de internet, las plantas y los microbios ya intercambiaban mensajes complejos para sobrevivir. Este diálogo químico ocurre en la rizosfera, donde bacterias y hongos actúan como aliados estratégicos o enemigos voraces. Mediante señales de humo moleculares, las raíces coordinan la captura de nitrógeno o lanzan alertas contra insectos herbívoros. Microbios como Bacillus y Trichoderma no sólo potencian el crecimiento vegetal, sino que también reclutan guardaespaldas naturales —como avispas parasitoides— para neutralizar plagas. Entender estas interacciones es la clave para la salud de los ecosistemas y el futuro de una agricultura sostenible. No son simples seres diminutos; son maestros de la diplomacia subterránea en una red invisible que apenas comenzamos a descifrar.
Citas
Akiyama, K., Matsuzaki, K., y Hayashi, H. (2005, 9 de junio). Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature, 435, 824-827. https://doi.org/10.1038/nature03608
Contreras-Cornejo, H. A., del-Val, E., Macías-Rodríguez, L., Alarcón, A., González-Esquivel, C. E., y Larsen, J. (2018a, julio). Trichoderma atroviride, a maize root associated fungus, increases the parasitism rate of the fall armyworm Spodoptera frugiperda by its natural enemy Campoletis sonorensis. Soil Biology and Biochemistry, 122, 196-202. http://dx.doi.org/10.1016/j.soilbio.2018.04.013
Contreras-Cornejo, H. A., Macías-Rodríguez, L., del-Val, E., y Larsen, J. (2018b, marzo). The root endophytic fungus Trichoderma atroviride induces foliar herbivory resistance in maize plants. Applied Soil Ecology, 124, 45-53. https://doi.org/10.1016/j.apsoil.2017.10.004
Contreras-Cornejo, H. A., Macías-Rodríguez, L., Real-Santillán, R. O., López-Carmona, D., García-Gómez, G., Galicia-Gallardo, A. P., Alfaro-Cuevas, R., González-Esquivel, C. E., Najera-Rincón, M. B., Adame-Garnica, S. A., Rebollar-Alviter, A., Álvaréz-Navarrete, M., y Larsen, J. (2021, 13 de abril). In a belowground multitrophic interaction, Trichoderma harzianum induces maize root herbivore tolerance against Phyllophaga vetula. Pest Management Science, 77(9), 3952-3963. http://dx.doi.org/10.1002/ps.6415
D´Alessandro, M., Erb, M., Ton, J., Brandenburg, A., Karlen, D., Zopfi, J., y Turlings, T. C. J. (2014, abril). Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions. Plant, Cell and Environment, 37(4), 813-826. https://doi.org/10.1111/pce.12220
Garnica-Vergara, A., Barrera-Ortiz, S., Muñoz-Parra, E., Raya-Gonzalez, J., Méndez-Bravo, A., Macías-Rodríguez, L., Ruiz-Herrera, L. F., y López-Bucio, J. (2016, marzo). The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ETHYLENE INSENSITIVE 2 functioning. New Phytologist, 209(4), 1496-1512. https://doi.org/10.1111/nph.13725
Macías-Rodríguez, L., Contreras-Cornejo, H. A., Adame-Garnica, S. G., del-Val, E., y Larsen, J. (2020). The interactions of Trichoderma at multiple trophic levels: Inter-kingdom communication. Microbiological Research, 240, 126552. https://doi.org/10.1016/j.micres.2020.126552
Macías-Rodríguez, L., Guzmán-Gómez, A., García-Juárez, P., y Contreras-Cornejo, H. A. (2018, 14 de julio). Trichoderma atroviride promotes tomato development and alters the root exudation of carbohydrates, which stimulates fungal growth and the biocontrol of the phytopathogen Phytophthora cinnamomi in a tripartite interaction system. fems Microbiology Ecology, 94(9), fiy137. https://doi.org/10.1093/femsec/fiy137
Piechulla, B., y Degenhardt, J. (2014, abril). The emerging importance of microbial volatile organic compounds. Plant Cell and Environment, 37(4), 811-812. https://doi.org/10.1111/pce.12254
Ryu, C.-M., Farag, M. A., Hu, C.-H., Reddy, M. S., Kloepper, J. W., y Paré, P. W. (2004, marzo). Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiology, 134(3), 1017-1026. https://doi.org/10.1104/pp.103.026583
Ryu, C.-M., Farag, M. A., Hu, C.-H., Reddy, M. S., Wei, H.-X., Paré, P. W., y Kloepper, J. W. (2003, 8 de abril). Bacterial volatiles promote growth in Arabidopsis. Proceedings of the National Academy of Sciences of the USA, 100(8), 4927-4932. https://doi.org/10.1073/pnas.0730845100
Walker, T. S., Bais, H. P., Grotewold, E., y Vivanco, J. M. (2003, 1 de mayo). Root exudation and rhizosphere biology. Plant Physiology, 132(1), 44-51. https://doi.org/10.1104/pp.102.019661
Publicado
Número
Sección
Licencia
Derechos de autor 2026 Revista Digital Universitaria

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Revista Digital Universitaria es editada por la Universidad Nacional Autónoma de México se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional. Basada en una obra en http://revista.unam.mx/.



