Las microondas en la síntesis de nanomateriales
Vol. 24, núm. 5 septiembre-octubre 2023
Las microondas en la síntesis de nanomateriales
Yohuali Zarazua Aguilar, Franchescoli Didier Velázquez-Herrera y Amanda Stephanie Garzón Pérez CitaResumen
Durante las últimas décadas se han estudiado diferentes maneras de obtener nanomateriales (materiales que presentan tamaños de partícula hasta cien mil veces menor que un cabello humano). Los métodos tradicionales de síntesis requieren altas temperaturas y presiones, con el fin de obtener materiales con características específicas, como la cristalinidad, o el arreglo que tienen los átomos cuando forman una estructura. Para alcanzar estas altas temperaturas se emplean técnicas de calentamiento por convección o conducción, que suelen tomar varios días en obtener el resultado deseado. Es por ello que es importante buscar rutas que sean fáciles, rápidas, económicas y comercialmente viables para la producción de nanomateriales; una de las más importantes y versátiles investigadas en los últimos años es el uso microondas. Las microondas son ondas eléctricas y magnéticas generadas artificialmente, que provocan que las moléculas aumenten su movimiento, generando un sobrecalentamiento de manera fácil y rápida en una sustancia. Por lo anterior, una síntesis asistida por irradiación de microondas permite obtener nanomateriales con características específicas, ajustables a las necesidades de aplicación, como el tamaño y tipo de distribución de poros, el área superficial específica y la cristalinidad, que dependen en gran medida del tiempo, frecuencia y potencia de irradiación. Además, con el uso de las microondas se logra disminuir el tiempo que se emplea para la obtención de nanomateriales. Así, en este texto se abordará la importancia del uso de las microondas en la síntesis de nanomateriales a través de un contexto aplicativo y se dará una breve descripción histórica.
Palabras clave: microondas, síntesis, nanomateriales.
Microwaves in the synthesis of nanomaterials
Abstract
During the last decades, different ways of obtaining nanomaterials (materials that have particle sizes up to 100,000 times smaller than a human hair have been studied. Traditional synthesis methods require high temperatures and pressures in order to obtain specific characteristics such as crystallinity, that is, the arrangement that atoms have when they form a structure. To obtain high temperatures, convection or conduction techniques are used, which usually take several days for the desired result. That is why it is important to look for routes that are easy, fast, economical, and commercially viable to produce nanomaterials; currently, one of the most important is the use of microwave irradiation (exposure to radiation). Microwaves are artificially generated electrical and magnetic waves that cause molecules to collide with each other easily and quickly, causing overheating in a substance. Therefore, a synthesis by microwave irradiation allows to obtain nanomaterials with specific moldable characteristics that depend to a large extent on time, frequency, and irradiation power, such as size and type of pore distribution, specific surface area, and crystallinity. In addition, with the use of microwaves it is possible to reduce the time used to obtain such nanomaterials. Thus, in this text, the use of microwaves in the synthesis of nanomaterials will be addressed, in order to explain its importance through an application context and a brief historical description.
Keywords: microwave, synthesis, nanomaterials.
Introducción
Los nanomateriales son aquellos cuyo tamaño en cualquiera de sus dimensiones se encuentra entre 1 y 100 nanómetros (100,000 veces menores que un cabello humano). Obtener estos tamaños es posible gracias a la manipulación controlada de la estructura de los materiales por medio de técnicas de síntesis basadas en la modificación de la física, la química, la biología y la ciencia de los materiales (Gleiter, 2000; Silva y Medina, 2022).
En la actualidad, los nanomateriales pueden clasificarse de acuerdo con su aplicación, su estado de aglomeración, su morfología o forma, y su estructura. No obstante, la dimensión de la partícula es la característica más utilizada y completa, ya que de ella depende de la forma y el tamaño que presente. En la figura 1 se muestra un esquema de la clasificación por la dimensión del nanomaterial en el que se señalan todas las dimensiones de las estructuras que se encuentran entre 1 y 100 nm (Martínez-González et al., 2022).
Figura 1. Clasificación de nanomateriales por sus dimensiones: cero dimensional (0D) indica que todas sus dimensiones se encuentran entre 1 y 100 nm, unidimensional (1D) muestra que dos de sus dimensiones se encuentran en el orden nanométrico, bidimensional (2D) presentan una sola dimensión que es menor a 100 nm y tridimensional (3D) indica que todas sus dimensiones son superiores a 100 nm.
Crédito: elaboración propia.
Dentro de los múltiples métodos de obtención de nanomateriales que se han desarrollado en los últimos años, el uso de la irradiación con microondas ha generado muchísima atención. Esto se debe a que permite obtenerlos con propiedades texturales, de forma, cristalinidad, distribución y tamaños de partícula específicos, a través de la optimización de condiciones como la potencia y frecuencia de irradiación. Asimismo, permite la disminución del tiempo de síntesis, acortando a segundos reacciones que por métodos de calentamiento normales tardan hasta 72 horas (Jhung et al., 2006; Rivera et al., 2009). Todo esto se logra gracias a que un horno de microondas genera ondas eléctricas y magnéticas que tratan de alinerase a los dipolos de las moleculas, es decir, a su parte negativa y positiva y, al hacerlo, orientan el crecimiento de las partículas.
Descubriendo las microondas
De manera general, es posible definir las microondas como una forma de energía electromagnética (interacción entre el magnetismo y la electricidad), que se encuentra en el extremo más bajo del espectro electromagnético (radiación que se propaga en el espacio en forma de ondas; ver figura 2). Este tipo de energía se ubica en longitudes de onda (espacio que hay entre una onda y otra) de 1 a 10-3 m, entre la radiación de infrarrojo y las ondas de radio, a frecuencias (número de ondas que pasan por un punto en un determinado tiempo) entre 0.3 y 300 GHz (Tompsett et al., 2006).
Figura 2. Espectro electromagnético.
Crédito: elaboración propia.
Con su descubrimiento, el uso de las microondas comenzó a popularizarse, principalmente en el hogar. El primer horno de microondas comercial fue desarrollado en la década de los años 40 por P. Spencer en la compañía Raytheon (Loupy, 2004). Spencer construía magnetrones para los equipos de radar durante la Segunda Guerra Mundial. En una ocasión mientras observaba un radar, se dio cuenta de que el chocolate que traía en su bolsillo se había calentado, lo cual detonó su curiosidad y comenzó a investigar. Él dedujo que al colocar el magnetrón dentro de una caja de metal y al disparar las ondas eléctricas y magnéticas, éstas tenían un efecto de calentamiento en los alimentos que se colocaban dentro.
En los primeros años de investigación enfocada en el estudio del efecto de las microondas en las síntesis de compuestos químicos, los hornos de microondas domésticos fueron de gran utilidad para estudiar todas las propiedades que pueden ser modificadas o controladas en el desarrollo de nanomateriales. Los hornos de microondas operaban a una frecuencia de 2.45 GHz y era posible controlar la temperatura a través de sondas externas, que interrumpían la irradiación cuando el sistema llegaba a la temperatura deseada (Tompsett et al., 2006). Una de las características más importantes del valor de esta frecuencia en el proceso de síntesis es que la energía transmitida por los fotones (partículas elementales de la luz) es relativamente baja (0.0016 eV), por lo que no es posible romper los enlaces químicos de los reactivos involucrados, inhibiendo la generación de reacciones químicas.
Hoy en día, los hornos que se basan en microondas cuentan con un amplio rango de aplicaciones, que incluyen la esterilización, y el secado y síntesis de compuestos orgánicos e inorgánicos, por mencionar algunos. Haciendo énfasis en las reacciones de síntesis, parte de la energía de las microondas se absorbe por el nanomaterial y se transforma en calor, lo que permite que la temperatura se incremente de manera puntual. De una forma más técnica, el calentamiento se realiza con la energía suficiente (0.037 kcal/mol) para afectar únicamente a las moléculas, mas no a la estructura (la estructura se ve afectada con energías de entre 80 y 120 kcal/mol). Así, la energía de estas ondas sólo permite calentar de manera uniforme grandes secciones, sin afectar su composición química (Jubri et al., 2012).
Sintetizando nanomateriales con microondas
Durante el proceso de síntesis con microondas, las ondas electromagnéticas se dirigen directamente a las moléculas, lo que conduce al aumento de la polaridad (polo positivo y negativo en una molécula) de la solución. Este efecto provoca que las moléculas pasen de su estado fundamental (forma de una molécula sin reaccionar) al estado de transición (forma de las moléculas cuando se aplica energía), generando un rápido aumento de la temperatura en el núcleo de la mezcla de reacción. El proceso da como resultado un calentamiento más rápido y uniforme de la solución (ver figura 3). Este calentamiento no depende directamente de la conductividad térmica (capacidad para conducir el calor) del nanomaterial, sino de la alineación de los polos de las moléculas (positivos y negativos) presentes en el medio, lo cual es posible controlar gracias a la potencia y frecuencia con la que son irradiados los reactivos con las microondas (Kappe, 2004; Kappe y Dallinger, 2006).
Figura 3. Interacción entre las microondas y las moléculas.
Crédito: elaboración propia.
El uso de microondas proporciona varias ventajas dentro de los procesos de síntesis, tales como el rápido calentamiento y el calentamiento y la reducción de los gases sin afectar la estructura. Gracias a estas ventajas, se mejoran las propiedades y la posibilidad de obtener nuevos nanomateriales y compuestos (Jubri et al., 2012).
Los hornos de microondas comúnmente utilizados en la síntesis constan de seis componentes básicos:
- El generador de microondas, también llamado magnetrón.
- La guía de ondas, la cavidad de microondas.
- El agitador (ondas a extenderse).
- El termostato.
- El aire de escape.
Estos componentes siguen una secuencia para poder generar las ondas electromagnéticas. Primero, el magnetrón produce las ondas que son propagadas directamente en la cavidad del horno, en donde un difusor (separador) las distribuye en diferentes direcciones para ser absorbidas por las moléculas presentes en el medio irradiado (ver figura 4; Arruda y Santelli, 1997).
Figura 4. Radiación en un horno de microondas.
Crédito: elaboración propia.
En la síntesis por microondas se deben tomar en cuenta diversos factores, como el pH de la solución, potencia, tiempo del calentamiento, agitación, presión y temperatura (Tompsett et al., 2006). Al controlar todos estos factores durante el proceso de formación de nanomateriales, es posible controlar las propiedades texturales como área específica, tamaño y volumen de poro y, las propiedades morfológicas, como el tamaño y la textura de partícula (Zarazúa-Aguilar et al., 2018).
Dentro de los nanomateriales obtenidos con esta técnica, encontramos las arcillas, de las cuales los hidróxidos dobles laminares o compuestos tipo hidrotalcita son los que se sintetizan más frecuentemente. El proceso es muy común y consta de una serie de pasos que involucran la combinación de los diversos reactivos en un medio controlado bajo agitación constante; posteriormente, cuando se han mezclado, se hace uso de las microondas bajo condiciones de tiempo y temperatura determinadas. El uso de microondas disminuye el tiempo de síntesis y promueve la formación de un nanomaterial más uniforme y con tamaños de partícula más pequeños (Velázquez-Herrera y Fetter, 2022), en comparación con el uso de un método común de calentamiento, como en una autoclave, el cual es muy parecido a una olla de presión con la que se cocinan alimentos.
Conclusiones
Las microondas han ayudado al ser humano en diversas tareas, desde calentar agua para prepararse un café o un té, hasta obtener los más sofisticados y mejores nanomateriales, que se pueden usar para diversas aplicaciones en medicina, remediación de medio ambiente, ingeniería, etcétera. Desde el descubrimiento de su uso en nanomateriales, se han sintetizado diversos tipos, de los que se han estudiado las características de estructura y textura obtenidas por este método, optimizando al mínimo los tiempos de síntesis, y conociendo los parámetros de control. Así, cada nanomaterial puede ser diseñado de manera tal que cumpla con propiedades físicoquímicas específicas o con una función en particular, dependiendo de la naturaleza de aplicación.
Referencias
- Arruda, M. A. Z., y Santelli, R. E. (1997). Mecanização no preparo de amostras por microondas: o estado da arte. Química Nova, 20(6). https://doi.org/10.1590/S0100-40421997000600012.
- Jhung, S. H., Lee, J.-H., Forster, P. M., Férey, G., Cheetham, A. K., y Chang, J.-S. (2006). Microwave Synthesis of Hybrid Inorganic–Organic Porous Materials: Phase-Selective and Rapid Crystallization. Chemistry – A European Journal, 12(30), 7899-7905. https://doi.org/10.1002/chem.200600270.
- Jubri, Z., Hussein, M. Z., Yahaya, A., y Zainal, Z. (2012). The effect of microwave-assisted synthesis on the physico-chemical properties of pamoate-intercalated layered double hydroxide. Nanoscience Methods, 1(1), 152-163. https://doi.org/10.1080/17458080.2011.630036.
- Kappe, C. O. (2004). Controlled microwave heating in modern organic synthesis. Angewandte Chemie – International Edition, 43(46), 6250-6284. https://doi.org/10.1002/anie.200400655.
- Kappe, C. O., y Dallinger, D. (2006). The impact of microwave synthesis on drug discovery. Nature Reviews Drug Discovery, 5(1), 51-63. https://doi.org/10.1038/nrd1926.
- Loupy, A. (Ed.). (2004). Front Matter. Microwaves in Organic Synthesis. https://doi.org/10.1002/3527601775.fmatter.
- Martínez-González, J., Flores Gil, A., Reyes-Contreras, D., Vigueras Santiago, E., y García-Orozco, I. (2022). Síntesis de nanoestructuras de carbono por molienda mecánica. En E. Vigueras Santiago y G. Martínez Barrera (Eds.), Materiales Avanzados y Nanomateriales: aprovechamiento de fuentes naturales y sus beneficios al medio ambiente (pp. 201-238). OmniaScience.
- Rivera, J. A., Fetter, G., y Bosch, P. (2009). New hydroxyapatite–hydrotalcite composites ii. microwave irradiation effect on structure and texture. Journal of Porous Materials, 16(4), 409-418. https://doi.org/10.1007/s10934-008-9213-z.
- Silva Y. J. E., y Medina S. C. A. (2022). Materiales y nanomateriales. Principios, aplicaciones y técnicas de caracterización. Escuela Superior Politécnica de Chimborazo.
- Tompsett, G. A., Conner, W. C., y Yngvesson, K. S. (2006). Microwave Synthesis of Nanoporous Materials. ChemPhysChem, 7(2), 296-319. https://doi.org/10.1002/cphc.200500449.
- Velázquez Herrera, F. D. y Fetter, G. (2022). Arcillas: Desvelando sus secretos. Benemérita Universidad Autónoma de Puebla: Dirección General de Publicaciones. https://tinyurl.com/3mfa52vv.
- Zarazúa-Aguilar, Y., Paredes-Carrera, S. P., Valenzuela-Zapata, M. A., y Sánchez-Ochoa, J. C. (2018). Cr (vi) and naftalene simultaneous degradation using layered double hydroxides CuZnGa (Degradación simultánea de Cr(vi) y naftaleno empleando compuestos tipo hidrotalcita CuZnGa). Revista Mexicana de Ingeniería Química, 17(2), 679-691. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2018v17n2/zarazua.
Recepción: 08/2/2022. Aprobación: 27/07/2023.