Vol. 19, núm. 3 mayo-junio 2018

Galería fotográfica
A todas luces, diálogo de saberes entre arte y ciencia

Federico Nájera Febles Cita

Actividades de ciencia

Para el desarrollo de las actividades de ciencia del proyecto A todas luces, diálogo de saberes entre arte y ciencia se consideró el tema color como un puente conceptual para unir ambas disciplinas y elaborar con esta base una secuencia didáctica que favoreciera la observación, la experimentación, la indagación y el diálogo constante.

Los talleres de ciencia realizados son actividades procedimentales que buscan promover el pensamiento crítico y analítico, hacia diferentes hechos y fenómenos. Entre los talleres realizados destacan el Disco de Newton y el Anamorfismo.

Durante los talleres se formulan preguntas detonadoras como: ¿A qué se debe el color de las cosas? ¿Qué papel juega la luz en este proceso? ¿Qué es la luz? ¿Cuántas formas existen de generar luz? Esto con la intensión de promover el aprendizaje activo mediante el diálogo.

Demostración de luminiscencias

En esta actividad se realizan diversos experimentos en torno al tema de la luz y el color, así los participantes juegan con prismas para descubrir que la luz blanca esta formada por todos los colores o con materiales foto luminiscentes para conocer más acerca de las luminiscencias.


Actividades de arte

La elaboración de cada mural tuvo una duración de dos semanas por cada escuela. En esta actividad se buscó establecer un vinculo entre los talleres de ciencia y las actividades de arte, mediante el empleo de distintas metodologías desarrolladas especialmente para el proyecto, artistas y divulgadores plasmar este trabajo la creación artística del mural. En cada escuela se selecciono un grupo de niños y se realizaron juegos y ejercicios de percepción visual y sensibilidad estética; se definió el contenido a plasmar mediante una lluvia de ideas con los niños y se trazaron los primeros apuntes y bocetos. Posteriormente se formaron equipos pequeños para realizar tareas complementarias; y manos a la obra hasta terminar el mural, y presentarlo ante la comunidad escolar.

Vol. 19, núm. 3 mayo-junio 2018

Ciencia y arte… A todas luces

José Ramón Hernández Balanzar Cita

Introducción

A todas luces, diálogo de saberes entre ciencia y arte es un proyecto que tuvo su origen en el año 2015 el marco de la reunión nacional de Coordinadores de la RedPEA, que es la red de escuelas asociadas a la unesco y que en nuestro país están coordinadas por la Comisión Nacional de Cooperación con la unesco bajo el auspicio de la Secretaría de Educación Pública (conalmex-sep). La participación y coincidencia en la mencionada reunión de la doctora Ana María Cetto del Museo de la Luz (ml-unam) y de la maestra Graciela Ferreiro de la Asociación de Artistas Plásticos de México (artac) provocó sinergia para que entre ambas instituciones representadas en sus personas, y a invitación de la conalmex, se buscará la posibilidad de generar un foro de participación, discusión, diálogo e intercambio de ideas entre expertos, estudiosos y apasionados en ambos temas: ciencia y arte, con el fin de promover entre las niñas y niños estudiantes de la escuelas de la RedPEA el trabajo artístico y científico en torno al tema de la luz desde ambas áreas y esferas de conocimiento. Es por lo anterior, que en junio de 2016 a iniciativa e invitación del Museo de la Luz se llevó a cabo el Seminario “A todas luces, diálogo de saberes entre ciencia y arte” −foro en el que artistas, científicos y divulgadores expusimos puntos de vista, trabajos artísticos y colaborativos, e investigaciones en torno a la luz−.

¿Por qué ciencia y arte? 1

Fascinación y seducción, atracción y rechazo… Para muchos, la ciencia no busca el orden y la igualdad entre las cosas, sino aspectos todavía más generales del mundo en su conjunto, tales como “la simetría”, “la armonía”, “la belleza”, y “la elegancia”; aún a expensas, aparentemente, de su adecuación empírica, como por ejemplo la teoría general de la relatividad. Para los griegos la belleza tuvo siempre una significación enteramente objetiva. La belleza era verdad, constituía un carácter fundamental de la realidad. De ahí el famoso lema, tan significativo y usado a lo largo de la historia del pensamiento filosófico: “lo verdadero, lo bueno y lo bello convergen” (Pérez Tamayo, 2005).

En la misma ciencia más pura, la genialidad de los científicos ha sido ubicada, no en su inteligencia, considerada bastante normal, sino en una imaginación desbordada y muy fuera de lo común. De aquí que “la ciencia consiste en crear teorías”, es decir, modelos imaginados, estructuras teóricas, analogías, alegorías, símiles y comparaciones para representar los significados posibles de las realidades que nos circundan. Todo esto liga la ciencia con el arte.
Albert Einstein se refería a la teoría cuántica diciendo que “tal teoría no le gusta”, que “no le gustan sus elementos”, que “no le gustan sus implicaciones”, etcétera. Su asistente personal de investigación lo interpreta aclarando que “su enfoque [el de Einstein] tiene algo en común con el de un artista; que ese enfoque busca la simplicidad y la belleza” (Russell, 1975); que su método, aunque está basado en un profundo conocimiento de la física, es esencialmente estético e intuitivo; que, excepto por el hecho de ser el más grande los físicos desde Newton, uno podría casi decir que él no era tanto un científico cuanto un artista de la ciencia” (González Casanova, 2004).

El estudio de la relación ciencia y arte es, por sí mismo, bastante amplio, la fundamentación epistemológica de esa relación y su aplicación real o posible de ambos conceptos se asumen de manera particular en una de sus acepciones: la función cognitiva, es decir, como medio para la adquisición de conocimientos y de verdad.

El científico está convencido de que lo que demuestra científicamente constituye la verdad más firme y sólida. El filósofo piensa lo mismo cuando su razonamiento es lógico e inobjetable filosóficamente. Y el artista cree firmemente que con su obra de arte ha captado la esencia de la compleja realidad que vive.

Bertrand Russell, considerado uno de los pensadores más lúcidos del siglo xx y, quizá, de toda la historia de la humanidad, dice que “la ciencia, como persecución de la verdad, será igual, pero no superior al arte” (Clark, 1972). Asimismo, Goethe señala que el arte es la manifestación de las leyes secretas de la naturaleza.

La pasión por la aventura hacia la ciencia y el arte nos permite tener una imagen distinta de quiénes somos, ir más allá de las imágenes clásicas y estereotipadas. Nos da, fundamentalmente, mayor amplitud, mayor versatilidad. Es decir, adquirimos una mayor capacidad de apreciar la enorme variedad de aspectos y propiedades físicas que tiene la naturaleza para su mayor entendimiento, en consecuencia.

A todas luces… CONALMEX-ARTAC-Museo de la Luz UNAM

El desarrollo de las experiencias en las escuelas participantes de la RedPEA fue mediante actividades lúdicas, educativas y artísticas enfocadas a la educación para el desarrollo sostenible. El reto fue difundir este concepto a través de una aplicación/integración del fenómeno de la luz en procesos de creatividad científica y artística, dirigidos a estudiantes de primaria de las escuelas de la RedPEA en seis estados de la república mexicana. En los talleres impartidos por el Museo de la Luz, se vinculó la ciencia con el arte a través de diferentes fenómenos característicos de lumicisencias, fluoresencias, la suma y resta de los colores, la reflexión y refracción de la luz, ilusiones ópticas, y aspectos básicos y generales de luz y energía.

La fusión entre ciencia y arte, y el manejo cultural, inter y multidisciplinario de este proyecto permitieron mostrar el valor agregado para que la conalmex y la sep consideraran en 2017 el primer proyecto de apoyo para México dentro de los Programas de Participación de la unesco.

La experiencia de vincular la ciencia sobre la luz con el aspecto lúdico-creativo en la construcción de objetos con un sentido estético-artístico produjo como producto en cada escuela un bello, útil y verdadero mural colectivo, que hoy forma parte del patrimonio artístico, científico y cultural de cada institución. El éxito de este proyecto permitirá que en 2019 siga formando parte de los Programas de Participación apoyados por la conalmex en la unesco. Así también, que sea un programa que se presente en más escuelas; y que se capaciten profesores normalistas, con el fin de replicar dicha actividad en años subsecuentes y se llegue a más estudiantes en diferentes estados del país.

Referencias

  • Clark, R. (1972). Einstein: the life and times. Nueva York, NY: Avon Books.
  • González Casanova, P. (2004). Las Nuevas Ciencias y las Humanidades. Barcelona, Ed. Complutense, IIS-UNAM.
  • Hernández Balanzar J. R. (mayo 2006). ¿Por qué ciencia y arte? Primer simposio de Ciencia y Arte en el Instituto de Ciencias Nucleares de la unam. México.
  • Russell, B. (1975). La perspectiva científica. Barcelona: Ariel.
  • Pérez Tamayo, R. (2005). Arte y Ciencia [Entrevista de José Gordon]. Revista de la Universidad de México, 20, pp. 51-55.

A todas luces, una experiencia única entre ciencia y arte

Isaías Hernández Valencia Cita

Resumen

Este artículo tiene como objetivo presentar la experiencia que se ha vivido durante el desarrollo y puesta en marcha de las actividades del proyecto A todas luces, diálogo de saberes entre ciencia y arte; y exponer las bondades, diferencias y retos que se tuvieron al recorrer seis escuelas de nivel primaria, de primer grado a sexto grado, en diversos estados de la república mexicana. Se expondrán, también, algunas reflexiones y comparaciones con otras actividades que el Museo de la luz hace regularmente fuera de sus muros en otros contextos con propósitos específicos; para que, de esa manera, se vea la diferencia y potencialidad de haber trabajado divulgadores de la ciencia y artistas plásticos en un proyecto en común.
Palabras clave: ciencia, arte, expereincia, diálogo, divulgación de la ciencia.

A todas luces, a unique experience between science and art

Abstract

This article aims to present the experience that has been lived during the development and implementation of the activities of the project “Clearly, dialogue of knowledge between science and art”; and to expose the kindness, differences and challenges that were had when crossing six primary schools, from first grade to sixth grade, in different states of the Mexican Republic. Some reflections and comparisons with other activities that the museum regularly makes outside its walls in other contexts with specific purposes will be exposed; so that, in this way, we can see the difference and potentiality of having worked for science disseminators and plastic artists in a common project.
Keywords: science, art, expereince, dialogue, science dissemination.

Una primera reflexión entre ciencia y arte

Antes de comenzar a describir la experiencia vivida en el proyecto, quisiera aportar algunas reflexiones e ideas generales que se tienen de las disciplinas científicas y artísticas.

El arte y la ciencia son necesariamente diferentes desde el punto de vista del estudio y la difusión del saber. La ciencia intenta comprender el mundo a partir de un conocimiento acumulado en el tiempo, basándose en resultados reproducibles y en hechos demostrables y contrastados; se esfuerza en buscar la objetividad. Las humanidades, disciplinas académicas que observan la condición humana, utilizan métodos principalmente analíticos, críticos y especulativos. Las artes escénicas, visuales y literarias expresan el mundo a partir de las experiencias idiosincrásicas, la intuición, el movimiento y las metáforas. Los artistas suelen inspirarse en el pasado, pero la “verdad” de una obra de arte no se halla a través de una investigación sistemática que conduzca a hechos acumulativos y reproducibles; se trata, a menudo, de algo subjetivo y sensorial.



Arte Busca respuestas estéticas.
Está basado en la emoción y la intuición.
Es idiosincrático.
Se alimenta de la comunicación visual o sonora.
Es evocativo.
Se basa en valores que rompen tradiciones.
Ciencia Busca el conocimiento y la comprensión de todo.
Se basa en el uso de la razón.
Vive de la normativa.
Requiere una narrativa para su comprensión.
Su estrategia es explicativa.
Se alimenta de valores sistemáticos basados en la tradición y en el cumplimiento de las normas.

Tabla 1. Diferencias entre arte y ciencia.

Sin embargo, ambas disciplinas pueden llegar a estar profundamente conectadas ya que, a un nivel básico, todos nosotros exploramos fenómenos y experiencias vividas para intentar comprender la realidad y las potencialidades que pueden existir bajo ellas.

Aún más evidentes son las similitudes fundamentales compartidas por artistas y científicos. Tanto unos como otros se describen, en general, como creativos, intuitivos, disciplinados, lógicos e inspirados en sus actividades para comprender el mundo. Valoran la observación cuidadosa de sus entornos para recopilar información a través de los sentidos.

  • Aprecian la creatividad.
  • Proponen introducir cambios, innovaciones o mejoras sobre lo que existe.
  • Utilizan modelos abstractos para entender el mundo.
  • Aspiran a crear obras de relevancia universal.

Además, analizando las habilidades y estilos de vida de las personas exitosas en las artes, humanidades, ciencias y tecnología para entender qué es lo que hace que piensen creativamente, innoven y triunfen dentro, e incluso fuera, de sus disciplinas, encontramos que esas personas exhiben o exhibían el mismo conjunto de habilidades imaginativas, basta pensar en artistas como Picasso o físicos como Richard Feynman, sólo por mencionar un ejemplo.

Por otro lado, las actividades planeadas y la secuencia didáctica tienen como propósito que, en el proceso, la ciencia informe sobre el arte y ésta sobre la ciencia.

Descripción de las actividades

En el proyecto A todas luces, diálogo de saberes entre ciencia y arte se busca establecer un puente entre científicos y artistas para que guíen las inquietudes, dudas y propuestas de los niñas, niños y adolescentes, a partir de la observación, la experimentación y la reflexión de lo aprendido sobre el fenómeno de la luz y su aplicación en la creación de un objeto artístico que promueva y transmita el trabajo en equipo, la importancia de la luz para la vida, el cuidado de la naturaleza y su entorno local, el aprovechamiento del conocimiento adquirido para el desarrollo integral del ser humano en su comunidad y el desarrollo sostenible de las futuras generaciones.

Los objetivos definidos giran en torno a: 1) promover en niñas y niños el interés por conocer de dónde surge la energía solar y que encuentren un uso a ese conocimiento de conocer las explicaciones científicas de fenómenos relacionados con la luz y sus efectos sobre la vida en el planeta, 2) asociar los beneficios y aplicaciones útiles de la radiación solar a la sociedad humana, a través de actividades lúdicas, manipulación de instrumentos y experimentos sencillos, 3) Posibilitar la expresión artística de las niñas y niños desde su perspectiva social y cultural sobre el tema de la luz, 4) vincular el aspecto científico sobre la luz con el aspecto lúdico-creativo en la construcción de objetos con un sentido estético-artístico al realizar un mural o escultura colectiva, y 5) coadyuvar en el crecimiento del acervo cultural y artístico de las escuelas, al donar el objeto artístico elaborado por los estudiantes bajo la guía del artista.

El proyecto estuvo dirigido a estudiantes de educación primaria, cuyas escuelas se encuentran integradas en la Red del Plan de Escuelas Asociadas de la UNESCO. Se escogieron seis escuelas de diferentes estados de la república mexicana (ver tabla 2).



Escuela primaria Ciudad Fechas Grupos    Alumnos
C.E.I Roberto Cabral Del Hoyo. Zacatecas, Zac. Mayo 16 al 26 18 660
Escuela Práctica Anexa a la Normal Veracruzana. Xalapa, Ver. Junio 2 al 23 18 495
Escuela Primaria Francisco J. Santamaría. Villahermosa, Tab. Agosto 28 al 8 de septiembre 12 298
Escuela Urbana #96 Manuel M. Diéguez Guadalajara, Jal. Septiembre 18 al 29 12 407
Escuela Primaria Profesora Obdulia Zamora Martínez Monterrey, N.L. Octubre 2 al 13 6 149
Escuela Primaria Niños Héroes Campeche, Camp. Noviembre 13 al 24 13 436
79 2445

Tabla 2. Desglose de escuelas, estados, fechas y alumnos que se atendieron en el proyecto.

La manera en que se llevó a cabo

Para cumplir con los objetivos del proyecto, se planeó que en dos semanas se llevarían a cabo las actividades de ciencia y de arte, para posteriormente terminar con un mural o instalación artística. Divulgadores del Museo de la Luz, en el cual me incluyo, realizamos en la primera semana las actividades de observación, experimentación y talleres con temas de la luz. Los artistas, que forman parte de Asociación de Artistas Plásticos de México A.C. (ARTAC), aunque llegaban con nosotros desde la primera semana, comenzaban a mediados de ésta y terminaban con la presentación de la obra el viernes de la segunda semana.

Los objetivos se plantearon con la intención de que cuando las niñas y los niños observaran el producto artístico terminado tuvieran una lectura diferente de él al observarla, que no nada más vieran los trazos, las figuras, las formas, los colores, sino que observaran más allá, que con la experiencia que habían vivido supieran de la importancia de la luz en la percepción de los colores, de los mecanismos y fenómenos físicos que están sucediendo en la interacción entre la luz natural o artificial con la obra; que supieran por qué brillan ciertas pinturas cuando se iluminan con un tipo u otro de luz, que conozcan porqué el color que percibimos dependerá del color de la luz incidente, que vean más allá de lo evidente, que vean con conocimiento y con emoción.

Los talleres que se escogieron fueron el Disco de Newton y el Anamorfismo. El hecho de haber escogido estos talleres se debe a que en ambos se utilizan pinturas de diferentes colores, y esto nos da la oportunidad de “jugar” (entendamos jugar como una forma de experimentar) con el tipo de colores que se ocupen. Los colores que se utilizaron fueron los normales, de madera, crayola y colores fluorescentes. Asimismo, se utilizaron objetos autoadheribles fosforescentes. Estos últimos colores que menciono son muy utilizados en la escuela, en particular en la primaria: son de uso familiar los marcatextos (fluorescentes) y cartulinas con colores muy brillantes (fluorescentes, también). Los objetos autoadheribles son estampas que brillan en la oscuridad y que pueden pegar en sus habitaciones. Esto es fundamental para la actividad, dado que estamos utilizando materiales que son conocidos por los alumnos y que se observan en un ambiente diferente y preparado.





El ambiente especial anteriormente mencionado lo creamos en la demostración de luminiscencias, la otra actividad de ciencia que se desarrollaba en las escuelas. Se oscurecía un salón y colocábamos lámparas especiales (lámparas de luz negra o UV), focos normales (la bombilla incandescente y la lámpara fluorescente compacta), además, una lámpara de leds la cual podíamos cambiar el color de la luz a nuestra conveniencia. Como parte de la demostración, dichas fuentes de luz hacían que dos líquidos al juntarlos emitieran luz (quimiluminiscencia). Es decir, en el salón oscuro los alumnos veían y experimentaban que existen varios mecanismos de generar luz, no nada más las conocidas y las más normales.

La primera actividad de ciencia que se realizaba era el taller. Pintaban el Disco de Newton o el Anamorfismo utilizando los distintos colores, dependiendo del grado escolar: para los alumnos de 1°, 2° y 3° el Anamorfismo, y 4°, 5° y 6° el Disco de Newton. Pero antes de comenzar, jugaban con prismas y espejos de tal suerte que tenían que meter un haz de luz y, con el prisma, generar el espectro visible. Ese momento de experiencia y observación fue uno de sus primeros asombros: el ver cómo se produce los colores a partir de la refracción de la luz por un prisma.

En el caso de que no fuera posible la anterior actividad, con el prisma se les pedía que vieran hacia una fuente luminosa, un foco o una lámpara del salón. Esa experiencia nos servía para comenzar el diálogo, el juego y motivar la curiosidad innata de los niños. Se hacía énfasis en que el color que percibimos de todo lo que nos rodea es gracias a que en la luz vienen todos los colores, lo que observamos es el resultado de esa luz, ya sea de un foco o la del Sol, interactuando con el material y objeto que observamos. Les hacíamos preguntas como: ¿qué color observarían de algo si la luz que incide en él estuviera compuesta de un solo color?, ¿el color que percibimos de un objeto es una característica exclusiva de él?, ¿qué papel juega la luz en todo esto? Para pintar su Disco de Newton o Anamorfismo les proporcionábamos colores fluorescentes, además de los normales. En ese momento no les decíamos las características y propiedades de una sustancia o pintura fluorescente, simplemente la experiencia era que observaran cómo unos colores brillan más que otros. En todas las sedes a las que fuimos, lo interesante fue que los alumnos conocían estos materiales, estas pinturas, estos marcatextos pero siempre había la confusión entre algo fluorescente y fosforescente, la evidencia era que unos colores brillan más que otros y hay objetos que brillan en la oscuridad. Los objetos que los alumnos elaboraron posteriormente los iban a observar en la demostración de luminiscencias, en el salón previamente oscurecido y con lámparas especiales. El asombro fue total: el ¡wowww! resonaba al unísono en el salón.

Lo primero que se hacía en el salón de la demostración de luminiscencia era mostrar, con diferentes focos o lámparas, que no todos los focos se calientan al estar emitiendo luz. Aunque parece una afirmación evidente, no lo es del todo cuando tocas o intentas tocar los focos encendidos. Todos conocen, por experiencia, que los focos de bombilla incandescentes cuando están emitiendo luz no se pueden tocar dado que están calientes. Pero no es tan conocido que las lámparas fluorescentes compactas (LFC) no se calientan. Al niño lo hacíamos tocar la lámpara y en ese momento la prendíamos, el niño sentía y veía que al estar emitiendo luz no se calentaba lo suficiente como para retirar las manos inmediatamente. Con los focos incandescentes bastaba con prenderlo unos segundos, después apagarlo, y decirle al niño que acercara la mano. Nunca llegaron a tocarlo porque sentían la emisión de energía térmica.

Dado que los alumnos llegaban con lo que habían elaborado en su taller, lo siguiente que se hacía era que observaran lo que pintaron, pero con un foco especial, una lámpara de luz negra. Como el salón estaba oscurecido, apagábamos todas las luces y veían que lo que habían hecho en el taller requería de luz para verlo, de hecho, se requiere de luz para poder ver todo lo que nos rodea. Al prender la lámpara de luz negra, observaban cómo la zona que habían pintado con la pintura fluorescente brillaba más que lo demás. Recordemos que en taller se usaron estampas fosforescentes, de tal suerte que cuando se apagaba la luz negra la pintura fluorescente dejaba de brillar y continuaba brillando la estampa fosforescente. Por lo tanto, los alumnos experimentaban en carne propia, y menciono carne propia porque literalmente eso se hacía, se les pintaba sus manitas o su carita con el marcatextos (plumón fluorescente) y se les colocaba una estampa fosforescente. Entonces observaban qué sucedía con los materiales fluorescentes y fosforescentes cuando la lámpara de luz negra estaba encendida, y lo que pasaba cuando la lámpara se apagaba. Esa era una gran experiencia y era el momento de comentarles la diferencia ente un fenómeno fosforescente y uno fluorescente (lo fosforescente brilla en la oscuridad y lo fluorescente brilla sólo mientras la luz negra esté encendida); además, tenían el ejemplo de algo que brilla, o está emitiendo luz, y no está caliente. Esto era sólo el principio en la demostración.

A continuación, experimentaban con dos sustancias líquidas: agua oxigenada y luminol. Pasaban al frente y cuando vertían un líquido en el otro en oscuridad, la reacción química que se genera produce luz. Los alumnos quedaban totalmente sorprendidos. Posteriormente, les dábamos las varitas o pulseras quimiluminiscentes que, en lo general, ya conocían, ocasionalmente en las fiestas dan estas varitas como parte de la diversión o inclusive, algunos alumnos, mencionaban que las habían visto y jugado con ellas en paletas de dulce. Antes de concluir, se hablaba de organismos vivos que tienen la propiedad de emitir luz y todos participaban contestando el nombre de esos bichos: luciérnagas, cocuyos, ciertos peces marinos, medusas y hasta de los hongos se habló.





Para finalizar, observaban lo que habían elaborado con una lámpara de led en la que se puede controlar el color de luz que emite. Tres colores son los importantes que emiten estas lámparas y que nosotros utilizamos: rojo, verde y azul. Cuando observaban su trabajo con pura luz roja, el aspecto del color cambiaba a cuando se observaba con luz verde y, no se diga, cuando se iluminaba con la azul. Con esta experiencia quedaba clara la importancia de la luz en la percepción del color de los objetos, cómo el color no es propiedad exclusiva del objeto, se hacía evidente el papel fundamental de la luz y de su naturaleza.

En las seis sedes que visitamos con esta actividad, se vio la misma admiración en los niños. De primero a sexto grado los comentarios fueron de sorpresa. En los salones que utilizamos para la demostración siempre había materiales de todo tipo de pintura, una gran variedad de color y objetos fluorescentes o fosforescentes o ambos, cartulinas, hojas, aros de colores, hasta un frisbee fosforescente. Por tanto, los alumnos podían ahora clasificar todo lo que observaban y usar correctamente ciertos términos científicos. Cuando los alumnos salían de la escuela y llevaban lo que hicieron en su taller y los objetos fosforescentes, fluorescentes, quimiluminiscentes, inmediatamente comentaban con sus padres lo que habían hecho.

Los artistas plásticos y una selección reducida de alumnos crearon un mural con una selección reducida de alumnos, en el que utilizaron pinturas regulares y las brillantes. Se colocaron lámparas de luz negra para que se observara el mural y los efectos lumínicos producidos por las lámparas. Los alumnos, seguramente, cuando veían la obra, recordarían lo vivido.

Para el Museo de la Luz, este binomio, divulgadores y artistas, no se había presentado. No se había tenido la oportunidad de juntos participar en un proyecto. El Museo de la Luz ha participado desde su inicio, hace veintiún años, en diversas actividades fuera del museo. Se llevan actividades a diferentes escuelas de educación básica, media superior y superior; así como, a diferentes eventos culturales que se organizan en la Ciudad de México y en el interior de la república mexicana. Sin embargo, la experiencia de estas seis escuelas ha sido muy enriquecedora y se han aprendido muchas cosas nuevas. Las actividades extramuros regulares tienen como fin mostrar el fenómeno de la luz con talleres y demostraciones diversas, el eje fundamental es la luz. En esta ocasión, no sólo fue así, sino que se buscó dejar en los niños la inquietud por la experimentación, la indagación y aprovechar su curiosidad natural. Nos centramos en el color, en la forma en que se genera, la importancia de la luz para ello; también, en mostrar los mecanismos diferentes que hay para producir luz. El hecho de que después los niños hayan desarrollado un mural y que en él se exponen las experiencias que vivieron en las actividades, además de referentes regionales y culturales, ha hecho que este proyecto tenga un toque especial.

Conclusión

En mi opinión, y en estos más de 26 años que llevo desarrollando actividades similares, el haber participado en este proyecto me ha abierto una posibilidad que no había explorado: hablar de la ciencia con el pretexto del desarrollo de una pieza artística. Normalmente, a los diversos lugares que he ido, siempre era la luz, y el conocimiento común que se tiene de ella, quien llevaba la pauta en el desarrollo de la charla, la conferencia, el taller, la demostración o cual fuere la estrategia o el proceso para que, al final de la actividad, se viera a la luz desde otra perspectiva, que se viera a la luz, además de familiar, con una mirada de curiosidad y generadora de una gran cantidad de fenómenos que vemos, admiramos y utilizamos a diario.

Cabe mencionar que, para diseñar o planear la estrategia en esta ocasión, comencé exponiendo, de manera informal, y como siempre lo hago, el tema de la luz a los artistas plásticos que participarían en el proyecto. Para ellos también era una experiencia nueva. Para determinar su pieza y la forma de trabajo que iban a desempeñar en las escuelas, tomaron ideas de lo que experimentaron en esa plática informal. Yo, por mi parte, al saber que el trabajo iba a ser conjunto, tenía que lograr que las niñas y los niños, cuando vieran lo creado, principalmente tuvieran una experiencia de gozo y admiración con la actividad de ciencia, como se tiene, normalmente, cuando se observa una pieza de arte. Ese fue el reto principal en el que me enfoqué. En el proceso de las actividades siempre tratamos de crear admiración y contemplación por los efectos ópticos observados y tener presente que eso que observaban y experimentaban se plasmaría de manera natural en una pieza artística. Me siento totalmente complacido de haber vivido esta experiencia y ahora poder compartirla; la ciencia y el arte, el arte y la ciencia siempre van de la mano.

Vol. 19, núm. 3 mayo-junio 2018

SkyMeAPP: un proyecto de ciencia ciudadana
para el estudio de la contaminación lumínica

Héctor Antonio Solano Lamphar Cita

Resumen

La contaminación lumínica es un problema ambiental de reciente estudio a nivel mundial y que afecta no sólo la realización de actividades astronómicas, sino que también tiene impactos biológicos en organismos fotosensibles, incluyendo al ser humano. El proyecto SkyMeAPP se realiza con el objetivo de contribuir al estudio de la contaminación lumínica a nivel mundial por medio del alcance que permite la ciencia ciudadana. Lo anterior, mediante tres ejes principales: recabar información para la investigación, generar una vinculación entre el público en general y la comunidad científica, y generar un interés del público en general con respecto a este tipo de contaminación.
Palabras clave: contaminación lumínica, ciencia ciudadana, desarrollo de aplicaciones.

SkyMeAPP: A citizen science project for the study of light pollution

Abstract

Light pollution is a global environmental issue, which affects not only astronomical activities, but in addition, that has biological effects on all photosensitive organisms, including humans. The SkyMeAPP project has the aim of contributing to the worldwide study of light pollution, through the advantages of citizen science. Specifically, it follows three main goals: to gather data for research; to generate networks among the general public and the scientific community; to bring attention of society regarding light pollution.
Keywords: light pollution, citizen science, app development.

Introducción

La luz artificial comprende un complejo sistema urbano destinado a mantener a las ciudades iluminadas para que sea posible realizar actividades nocturnas en un mundo altamente industrializado. Sin embargo, durante más de una década, la iluminación artificial nocturna excesiva ha sido reconocida como un problema ambiental que ha llevado a la necesidad de formulación de prioridades de investigación para combatir la contaminación lumínica (CL). (Longcore and Rich, 2004; Navara and Nelson, 2007; Solano Lamphar, 2010; Falchi et al., 2011; García Gil et al., 2012; Gaston et al., 2013; Pawson and Bader, 2014).

La degradación ambiental que produce la CL se ve representada en diferentes aspectos que requieren de especial cuidado y en una necesidad de un enfoque integral que permita una correcta obtención de datos para su estudio. Además de los ya conocidos efectos producidos en la astronomía, existen otros que requieren de mayor atención. La iluminación nocturna artificial afecta a aquellos organismos con patrones de vida nocturna como migración, nutrición, reproducción e interacción colectiva (Moore et al., 2001; Vera et al., 2010; Fox, 2012; Cho et al., 2015; Solano Lamphar and Kocifaj, 2015); y a los servicios eco sistémicos (Lyytimaki, 2013), por favor véase la Figura 1.




Figura 1. Esquema de la contaminación lumínica y los efectos de la misma en su interacción con la atmosfera.

Asimismo, debido a que la visión es el mecanismo fisiológico más utilizado por los seres humanos (Solano lamphar, 2006), la CL representa una gran afectación a los procesos biológicos humanos, que incluyen afectaciones a la correcta segregación de melatonina; una hormona de vital importancia para disminuir la proliferación de distintas células cancerígenas (tales como las asociadas con el cáncer de mama en mujeres y cáncer de próstata en hombres (Anisimov, 2003; Solano Lamphar y Kocifaj, 2013).

Comprender todos los impactos ambientales que produce la luz nocturna artificial requiere vincular el conocimiento adquirido de más de un siglo de investigación experimental con un conocimiento de la intensidad, distribución espacial y composición espectral de la luz en el ambiente nocturno. En este sentido, se presta especial atención a la óptica de la atmósfera terrestre y a las interacciones entre la luz y las partículas suspendidas a nivel de la tropósfera. Básicamente, la óptica atmosférica redistribuye los patrones de emisión de la luz que se transforman a lo largo de la trayectoria de los fotones por diferentes capas atmosféricas (Seinfeld y Pandis, 2016; Alvarado et al., 2016; Kerker, 2016). Como consecuencia, las distribuciones de la CL se distorsionan de una manera compleja dependiendo de muchos factores.

Sin embargo, además de la atmósfera, los cambios temporales y espaciales de la CL están determinados por la función de emisión de las fuentes de luz artificial terrestres (Garstang, 1986; Cinzano y Castro, 1998, Aubé et al., 2005, Luginbuhl et al., 2009, Kocifaj y Solano Lamphar, 2014). Las características de la CL varían significativamente con el tipo de luz artificial y, en particular, con las características angulares de su patrón de emisión. (Kocifaj et al., 2015; Solano Lamphar y Kocifaj, 2016; Kocifaj y Solano Lamphar, 2016). Junto con la atmósfera, los cambios temporales y espaciales de una fuente de luz están determinados por la función de emisión de las fuentes de luz terrestre. Entendiéndose que la parte principal de esta función es un efecto colectivo de las funciones elementales de emisión de todas las luces artificiales privadas y públicas que se distribuyen en el área estudiada. Básicamente, cada fuente de luz puede caracterizarse por una función de emisión diferente y no existe una función de emisión estándar.




Figura 2. Representación de la función de emisión en sus diferentes caracterizaciones. F es la fracción de luz emitida directamente a la atmósfera, G es la fracción de luz reflejada en la superficie terrestre y posteriormente emitida a la atmósfera.

Desafortunadamente, los análisis teóricos o experimentales de las características de la función de emisión son extremadamente difíciles de obtener, debido tanto a la falta de dispositivos de medición altamente especializados, como a la carencia de datos estadísticos que representen la cantidad de iluminación pública y privada con que cuenta una urbanización. Las propiedades ópticas del medio ambiente atmosférico se encuentran en continuo cambio. No obstante, la función de emisión de las fuentes contaminantes solamente se altera cuando es modificado el sistema de iluminación artificial.



Figura 3. Esquema general de la APP.

En la mayoría de las ciudades, se tienen datos del tipo y cantidad de iluminación pública, debido a que su infraestructura y mantenimiento es responsabilidad gubernamental (Hölker et al., 2010; Ryu y Lee, 2015; Morgan-Taylor, 2015; Song & Li, 2017). Sin embargo, los datos sobre la iluminación privada se desconocen. Y, por lo tanto, los teóricos de la CL representan la función de emisión de una manera limitada que se ve sólo caracterizada por el conocimiento de la iluminación pública. El estudio teórico-experimental de dicha función es necesario y favorable, y es una fuente de motivación para proponer el presente proyecto con el que se podrá tener una configuración real para cada fuente, desarrollando una correcta simulación bajo diferentes condiciones atmosféricas. Para esto, se propone crear una aplicación que permita al público en general apoyar a la investigación científica sobre la CL generando al mismo tiempo un acercamiento a la misma y fomentando el interés por los distintos esfuerzos que se han realizado hasta la fecha por controlar este tipo de contaminación a nivel mundial (ver Figura 3).

Argumento metodológico

Esquema del equipo de desarrollo de la aplicación

El proyecto en sus distintas etapas y partes que lo conforman ha presentado distintos retos y objetivos. Se pueden identificar cinco equipos de trabajo diferentes (ver Figura 4):



Figura 4. Esquema de trabajo del desarrollo de la APP.

El equipo A y B forman parte de la programación y diseño de la aplicación. El equipo A tiene por objetivo la programación y funcionamiento de la aplicación destinada a la clasificación de fotografías. Está formado por un grupo de científicos intersdisciplinario e internacional que realizó la programación conforme a los modelos teóricos y a consideraciones científicas fundamentadas en publicaciones robustas. El equipo B tiene por objetivo la programación y funcionamiento de la aplicación destinada al funcionamiento geolocalizado del dispositivo, así como de la interrelación con otros usuarios con respecto a su posición.

El equipo C tiene por objetivo específicamente el diseño e ilustración de la aplicación en general, así como su divulgación en redes sociales y posicionamiento entre usuarios.

El objetivo del equipo D es asegurar el correcto funcionamiento de la información recabada así como el de dar mantenimiento y actualización al servidor que forma parte del proyecto.

En el sitio web destinado al proyecto (ver Figura 6) convergen no solamente los usuarios y la comunidad científica que consulta la información recabada, sino todos los demás actores que se hayan sumado al proyecto. El objetivo del equipo E es generar conexiones interinstitucionales y académicas entre los distintos actores de investigación y no-acadaémicos con el fin de fortalecer el vínculo entre la sociedad y la investigación.

Metodología de SkyMeAPP

El proyecto SkyMeAPP es un proyecto de ciencia ciudadana, por lo que depende fundamentalmente de la convergencia y participación del público en general y la comunidad científica internacional para lograr los objetivos generales y particulares. Por lo tanto, se contemplan dos esfuerzos que le dan el soporte al proyecto: un sitio web y la creación y difusión de la aplicación para dispositivos móviles SkyMeAPP (ver Figura 5).



Figura 5. Esquema metodológico de la APP.

Alineado a los esfuerzos institucionales sobre el Día Internacional de la Luz, el sitio web es un espacio digital de convergencia entre los actores del proyecto: instituciones académicas, organismos no gubernamentales, comunidad científica, público en general y los usuarios de la aplicación SkyMeAPP. La página de internet funcionará en tres ejes: difusión de contenido científico internacional relacionado a la CL, vinculación interinstitucional y académica, interrelación y protagonismo de usuarios de la aplicación (ver Figura 6).




Figura 6. Ventana principal de la página web de la aplicación SkyMeAPP.

Por otra parte, la herramienta principal del proyecto es una aplicación móvil que es capaz de proporcionar a la comunidad científica de información útil, obtenida a partir de fotografías tomadas con cualquier dispositivo de datos celulares, para el estudio de la CL y temas relacionados. La aplicación está conformada en su funcionamiento en dos grandes rubros: la clasificación de fotografías georreferenciadas y la interfaz de uso.

La interfaz, basada en la visualización de la geolocalización del dispositivo, tiene dos objetivos primordiales. El primero, llevar a los usuarios a trabajar en equipo y generar una comunidad interesada en el uso de la aplicación. El segundo, indicar a los usuarios sobre el estado de CL de su ciudad o región con el fin de obtener la mayor información de distintos lugares y permitir que el usuario reconozca el nivel de contaminación en el que se encuentra localizado.

La figura 7 muestra la página principal de la interfaz móvil SkyMeAPP, con los íconos que abrirán todas las posibilidades de la aplicación. Se puede observar que en la página principal se encuentran los íconos básicos, los más importantes; es decir, los que nos darán la información que debe procesar una APP de ciencia ciudadana a través del envío de datos a un servidor preparado para recibirlos. Posteriormente, por medio de links de la misma aplicación, se encuentran las partes de información, el tutorial de uso y las políticas de privacidad que permitirá proteger al usuario por medio de técnicas de gobernanza de datos.


sky me

Figura 7. Página principal de la aplicación SkyMeAPP.

Observando la figura 7, y considerando los Íconos de izquierda a derecha: 1 Start, inicia la toma de fotografías y los emoticones de sensaciones del usuario. 2 LP, indica al usuario la cantidad de CL que tiene en el lugar de las mediciones. 3 ícono central, dirige al usuario hacia la política de privacidad, contacto para recomendaciones y registro de usuario. 4 HIW, una guía rápida visual del uso de la APP. 5 Info, explica al usuario los objetivos de la APP, información sobre CL y sus efectos, comunicación sobre el Día Internacional de la Luz, un tutorial más avanzado y diferentes links para que el usuario pueda descargar, gratuitamente, artículos científicos que tratan el tema de la CL.

Clicando en el primer ícono, Start, el usuario se acerca a una fuente de luz y se toma una fotografía que posteriormente nos permitirá medir los luxes emitidos. Lo anterior se logra accediendo a la cámara del dispositivo celular y utilizándola teóricamente como medidor fotométrico. Se le pide al usuario que la fuente de luz se situé en un cuadrado de la cámara programado con tal fin. Lo anterior para evitar que la fotografía quede fuera de los ejes de toma. El usuario tiene la posibilidad de observar la fotografía tomada antes de enviarla (ver Figura 8). Al clicar en send el dato se envía georreferenciado a nuestro servidor.




Figura 8. Página del análisis visual de la fotografía antes de ser enviada.

Una vez que la fotografía sea enviada, aparecerán diferentes emoticones que permitirán establecer la influencia del alumbrado urbano sobre la población (ver Figura 9). Es decir, el usuario tiene la posibilidad de comentar sobre sus sensaciones bajo la iluminación en la que se encuentra, con el fin de determinar qué efectos psicológicos tiene la iluminación nocturna en el usuario. Con la amable colaboración del usuario, podremos hacer un análisis global de la respuesta emocional que la iluminación nocturna produce en la población. Esa información se enviará georreferenciada a nuestro servidor, y con la misma será posible hacer recomendaciones importantes para generar políticas públicas sobre este aspecto.




Figura 9. Página en donde el usuario podrá comentar sobre la respuesta emocional percibida por la luz ambiental.

Clicando en el segundo ícono de la parte inferior, LP, el usuario tiene la posibilidad de conocer un aproximado de CL en su área. La medición se realiza utilizando un mapa global de la CL que fue desarrollado por el científico esloveno, colaborador del proyecto SkyMeAPP, Jurij Stare (ver Figura 10). La medición se obtiene automáticamente en diferentes unidades; mag/arcsec2 (medición astronómica de la CL) y luminancia en cd/m2, pero también se indica un nivel de la escala Bortle (escala que permite conocer diferentes niveles de contaminación). De esta manera, el usuario conoce la cantidad de contaminación que se tiene y que tan alta o baja se encuentra con respecto a las condiciones normales que se deberían tener.




Figura 10. Página en donde el usuario podrá reconocer el nivel de contaminación lumínica en su punto de observación.

Un elemento importante de la aplicación, y de interés al usuario, se representa en íconos especiales que darán información sobre el Día Internacional de la Luz, CL, permitirán al usuario descargar los artículos científicos publicados en la materia, entre otros.

Las mediciones tomadas con el dispositivo mediante la aplicación deberán cumplir con criterios de clasificación para que puedan ser consideradas automáticamente como procesables y así asegurar lo más posible que puedan ser útiles para la comunidad científica. El diseño posterior de los modelos automatizados de procesamiento así como la definición de criterios estará a cargo de un equipo científico internacional e interdisciplinario con el fin de asegurar que la información final esté, desde su concepción, lo mejor adaptada para el posterior análisis de la información.

Finalmente, como se mencionó anteriormente, una parte fundamental del funcionamiento de la aplicación es que el usuario se sienta parte de un esfuerzo internacional por abordar la CL. Por lo que, desde que la aplicación esté disponible, deben diseñarse estrategias y mecanismos para que la aplicación se conciba novedosa, actualizada y esté integrada al uso de otras aplicaciones y redes sociales. El presente proyecto de ciencia ciudadana permitirá, a los observadores individuales, ayudar a cuantificar la CL que se representará geográficamente en mapas que muestren diferentes niveles de contaminación. Asimismo, tal información podrá se utilizada para rastrear los cambios de iluminación artificial nocturna en todo el mundo.

Conclusiones

El área de influencia de la luz artificial nocturna ha aumentado rápidamente en las últimas décadas junto con el crecimiento poblacional y urbano que han experimentado las ciudades. La cantidad de CL emitida desde cualquier urbanización depende de las acciones de los individuos socializados en el interior de la comunidad, y de todas las características que conforman de la sociedad un sistema urbano (económicas, culturales, hábitos de consumo, la estructura urbana, entre otras). La variación espacial y temporal de estos factores determinan la CL resultante.

La ciencia ciudadana es un recurso muy útil para generar colaboraciones de investigación entre científicos y voluntarios. En particular es requerido para ampliar las oportunidades de recopilación de datos científicos y proporcionar acceso a la información científica para los miembros de la comunidad y el público en general. Uno de los más grandes retos del proyecto SkyMeAPP es el de lograr que el público en general se involucre y se sienta parte de un esfuerzo internacional por combatir la CL, por lo que la aplicación es sólo una herramienta que forma parte de un proyecto mayor donde convergerán no sólo usuarios sino instituciones, comunidad científica, entre otros actores involucrados.

Referencias

  • Alvarado, M. J., Lonsdale, C. R., Macintyre, H. L., Bian, H., Chin, M., Ridley, D. A., … & Jimenez, J. L. (2016). Evaluating model parameterizations of submicron aerosol scattering and absorption with in situ data from ARCTAS 2008. Atmospheric Chemistry and Physics, 16(14), 9435-9455. https://doi.org/10.5194/acp-16-9435-2016
  • Anisimov, V.N., (2003). The role of pineal gland in breast cancer development. Crit. Rev. Oncol. Hematol. 46, 221e234. https://doi.org/10.1016/S1040-8428(03)00021-0
  • Aubé, M., Franchomme-Fossé, L., Robert-Staehler, P., & Houle, V. (2005, agosto). Light pollution modelling and detection in a heterogeneous environment- Toward a night-time aerosol optical depth retrieval method. In Proc. SPIE (Vol. 5890, pp. 248-256). https://doi:10.1117/12.615405
  • Cho, C. H., Lee, H. J., Yoon, H. K., Kang, S. G., Bok, K. N., Jung, K. Y., Lee, E. I. (2015). Exposure to dim artificial light at night increases REM sleep and awakenings in humans. Chronobiol. Int. 1e7. https://doi:10.3109/07420528.2015.1108980
  • Cinzano, P., & Castro, F. J. (1998). The artificial sky luminance and the emission angles of the upward light flux. arXiv preprint astro-ph/9811297.
  • Falchi, F., Cinzano, P., Elvidge, C.D., Keith, D. M., Haim, A. (2011). Limiting the impact of light pollution on human health, environment and stellar visibility. J. Environ. Manag. 92 (10), 2714e2722. https://doi:10.1016/j.jenvman.2011.06.029
  • García Gil, M., San Martí Páramo, R., Solano Lamphar, H. A., Francia Payàs, P., (2012). Contaminación lumínica: una visión desde el foco contaminante: el alumbrado artificial. Universitat Politècnica de Catalunya. Iniciativa Digital Politècnica.
  • Garstang, R. H. (1986). Model for artificial night-sky illumination. Publications of the Astronomical Society of the Pacific, 98(601), 364.
  • Gaston, K.J., Bennie, J., Davies, T. W., Hopkins, J., (2013). The ecological impacts of nighttime light pollution: a mechanistic appraisal. Biol. Rev. 88 (4), 912e927. https://doi:10.1111/brv.12036
  • Hölker, F., Moss, T., Griefahn, B., Kloas, W., Voigt, C. C., Henckel, D., Hänel, A., Kappeler, P., Völker, S., Schwope, A., Franke, S., Uhrlandt, D., Fischer, J., Klenke, R., Wolter, C., Tockner, K. (2010). The dark side of light: a transdisciplinary research agenda for light pollution policy. Ecology and Society 2010; 15(4).
  • Kerker, M. (2016). The scattering of light and other electromagnetic radiation. Elsevier.
  • Kocifaj, M., & Solano Lamphar, H. A. (2014). Skyglow: a retrieval of the approximate radiant intensity function of ground-based light sources. Monthly Notices of the Royal Astronomical Society, 439(4), 3405-3413. https://doi:10.1093/mnras/stu180
  • Kocifaj, M., Solano Lamphar, H. A., & Kundracik, F. (2015). Retrieval of Garstang’s emission function from all-sky camera images. Monthly Notices of the Royal Astronomical Society, 453(1), 819-827. https://doi:10.1093/mnras/stv1645
  • Kocifaj, M., & Solano Lamphar, H. A. (2016). Angular emission function of a city and skyglow modelling: a critical perspective. Publications of the Astronomical Society of the Pacific, 128(970), 124001.
  • Longcore, T., Rich, C. (2004). Ecological light pollution. Front. Ecol. Environ, 2 (4), 191e198. https://doi.org/10.1890/1540-9295(2004)002[0191:ELP]2.0.CO;2
  • Luginbuhl, C. B., Duriscoe, D. M., Moore, C. W., Richman, A., Lockwood, G. W., & Davis, D. R. (2009). From the ground up II: Sky glow and near-ground artificial light propagation in Flagstaff, Arizona. Publications of the Astronomical Society of the Pacific, 121(876), 204. https://doi.10.1086/597626
  • Lyytimaki, J., (2013). Nature’s nocturnal services: light pollution as a non-recognised challenge for ecosystem services research and management. Ecosystem Services, 3, e44ee48. https://doi.org/10.1016/j.ecoser.2012.12.00
  • Moore, M. V., Pierce, S. M., Walsh, H. M., Kvalvik, S. K., Lim, J. D. (2001). Urban light pollution alters the diel vertical migration of Daphnia. Internationale Vereinigung fur Theoretische und Angewandte Limnologie Verhandlungen, 27 (2), 779e782. https://doi.10.1002/9780470694961.ch1
  • Morgan-Taylor, M. (2015). Regulating light pollution in Europe: legal challenges and ways forward. Routledge.
  • Navara, K. J., Nelson, R. J. (2007). The dark side of light at night: physiological, epidemiological, and ecological consequences. J. Pineal Res., 43 (3), 215e224. https://doi.10.1111/j.1600-079X.2007.00473.x
  • Pawson, S. M., Bader, M. F. (2014). LED lighting increases the ecological impact of light pollution irrespective of color temperature. Ecol. Appl., 24 (7), 1561e1568. https://doi.org/10.1890/14-0468.1
  • Ryu, J. S., & Lee, J. S. (2015). A Study on Status and Analysis of Local Governments Light Pollution Control Ordinance. Journal of the Korean Institute of Illuminating and Electrical Installation Engineers, 29(10), 7-16. https://doi.10.5207/JIEIE.2015.29.10.007
  • Seinfeld, J. H., & Pandis, S. N. (2016). Atmospheric chemistry and physics: from air pollution to climate change. John Wiley & Sons.
  • Solano Lamphar, H. A. (2006). Ergoftalmología: Análisis de los factores que inciden en la astenopía de los trabajadores de inspección visual en la industria electrónica de Ciudad Juárez. Ciencia & Trabajo, 8(21), 135-140.
  • Solano Lamphar, H. A. (2010). Medición de la contaminación lumínica en espacios naturales: propuesta de un modelo predictivo. Universitat Politècnica de Catalunya.
  • Solano Lamphar, H. S., Kocifaj, M. (2013). Light pollution in ultraviolet and visible spectrum: effect on different visual perceptions. PLos One, 8 (2), e56563. https://doi.org/10.1371/journal.pone.0056563
  • Solano Lamphar, H.A., Kocifaj, M. (2015). Urban night-sky luminance due to different cloud types: a numerical experiment. Light. Res. Technol. https://doi.org/10.1177/1477153515597732
  • Song, Z., & Li, X. (2017). Hazards, Causes and Legal Governance Measures of China’s Urban Light Pollution. Nature Environment and Pollution Technology, 16(3), 975.
  • Vera, L.M., Davie, A., Taylor, J.F., Migaud, H., (2010). Differential light intensity and spectral sensitivities of Atlantic salmon, European sea bass and Atlantic cod pineal glands ex vivo. Gen. Com. Endocrinol., 165 (1), 25e33. https://doi:10.1016/j.ygcen.2009.05.021

Vol. 19, núm. 3 mayo-junio 2018

Los efectos adversos de la luz artificial por la noche

Natalí N. Guerrero-Vargas, Manuel Ángeles-Castellanos y Carolina Escobar Briones Cita

Resumen

Nuestro cuerpo tiene un reloj biológico y todos los tejidos son osciladores que siguen al ciclo diario de luz-oscuridad para poder cambiar la intensidad de la conducta y nuestras funciones fisiológicas y de esta forma hacernos más eficientes según si estamos despiertos o dormidos. Nuestro reloj biológico reconoce cuando está oscuro y cuando hay luz y lo interpreta como día y noche. Con el uso de la luz eléctrica, que comenzó alrededor del siglo pasado, este sistema temporal ha sido alterada. Los científicos han comenzado a señalar que la exposición a la luz por la noche confunde al reloj biológico lo cual puede tener consecuencias sociales, ecológicas, conductuales y para la salud. Las personas que se exponen a la luz eléctrica por largas horas durante la noche son las más afectadas, particularmente los trabajadores nocturnos. Sin embargo, cambios en el estilo de vida han llevado a que jóvenes y niños se expongan desde edades tempranas a este fenómeno conocido como “contaminación lumínica”. En este texto pretendemos exhibir las evidencias clínicas y experimentales que indican que la luz artificial por la noche es un factor adverso, promotor de alteraciones en el sistema circadiano, en la fisiología y, por lo tanto, la contaminación lumínica es un factor de riesgo para la salud pública.
Palabras clave: ritmos circadianos, contaminación lumínica, depresión, alteraciones circadianas, síndrome metabólico, cáncer.

The negative effects of artificial light at night

Abstract

Our body has a biological clock and all tissues are oscillators that follow the daily light-dark cycle in order to change the intensity of behavior and physiological functions and make us more efficient according to whether we are awake or asleep. The invention and use of electric lights, which began around the last century, have affected this temporal organization. Light exposure at night has social, ecological, behavioral and health consequences that just now begin to be apparent. People with nocturnal habits are mostly exposed to light at night, and among them night workers are at risk. Due to changes in life style, young people, including children, are now individuals exposed to this factor that affects their physiology. The excess of light at night, also called “light pollution”, is the cause of diverse health problems. The aim of this paper is to present evidence from clinical studies and experimental models that points out the deleterious effects of light at night as a factor that affects the circadian system, physiological systems and behavior leading to disease. Here we offer evidence that light at night is a risk factor for public health.
Keywords: circadian rhythms, light pollution, depression, circadian disruption, metabolic syndrome, cancer.

Introducción: el sistema circadiano y la luz como señal de tiempo

La sociedad moderna ha adoptado un estilo de vida que violenta la organización temporal de nuestra conducta y fisiología. Las condiciones ambientales del día y la noche que se requieren para ajustar las diversas funciones fisiológicas en nuestro organismo se respetan poco y esto afecta la eficiencia con la que nos adaptamos y respondemos a los cambios del medio ambiente externo.

Nuestra adaptación al ciclo luz-oscuridad depende del sistema circadiano, que tiene la función de monitorear señales temporales externas y transmitirlas al resto del cuerpo. El sistema circadiano consiste en una especie de reloj principal (Buijs y Kalsbeek, 2001), localizado en el cerebro, específicamente en el núcleo supraquiasmático (NSQ) y por su interacción con tejidos del cuerpo con capacidad de oscilar con ciclos de 24 horas, conocidos como osciladores periféricos (Buijs, van Eden, Goncharuk y Kalsbeek, 2003).


Figura 1. Esquema del sistema circadiano.

Este reloj biológico transmite ritmos de 24 horas a todos los tejidos por medio de señales neurales y señales hormonales (melatonina y corticosterona). Por este proceso se logra que la conducta y las funciones internas respondan de forma coordinada dependiendo de la hora del día, lo cual se conoce como sincronización circadiana. Cuando el individuo realiza actividades en conflicto con las señales del reloj biológico, por ejemplo, encender la luz cuando debería de estar oscuro, se provoca una desincronización circadiana, lo cual lleva a que muchas funciones se realicen con una intensidad inadecuada para los requerimientos del ambiente (ver figura 1).

La referencia temporal más potente que rige al sistema circadiano es la alternancia del ciclo luz-oscuridad y son las células 1 de la retina las que le comunican al reloj biológico el estado de luminosidad correspondiente al día y la noche. La señal de luz activa a las neuronas del NSQ y activa genes cíclicos conocidos como genes reloj, que miden el tiempo a nivel celular (Golombek y Rosenstein, 2010). Otros eventos externos cíclicos que también afectan al sistema circadiano son los cambios de temperatura, sonidos sociales, el consumo de alimento, etcétera (Danilenko, Cajochen y Wirz-Justice, 2003; Klerman et al., 1998).

El NSQ impone ciclos de actividad a otras áreas cerebrales para darle tiempo a la conducta y para transmitir señales de tiempo al resto del organismo a través de proyecciones del sistema nervioso autónomo y por medio de señales hormonales, particularmente imponiendo ritmos en la producción de la hormona melatonina –secretada por la glándula pineal– y la corticosterona –producida por el eje hipotálamo-hipófisis-adrenal– (Kalsbeek et al., 2006). Los tejidos del cuerpo reconocen estas señales neuronales y hormonales y según su intensidad emiten respuestas convenientes para la fase del día o la noche (como se puede ver en la figura 1). Para la adecuada sincronización del sistema circadiano se requiere que las señales de luz-oscuridad que recibe el reloj biológico concuerden con las señales que recibe del resto del cuerpo sobre las actividades que realiza. Cuando estas señales están descoordinadas confunden al sistema circadiano y lo llevan a perder el orden temporal, lo cual repercute en la conducta y en la fisiología del individuo.

Hoy en día, nuestras casas, lugares de trabajo y calles están iluminadas por luz artificial brillante durante el día y durante la noche. La exposición a la luz artificial de noche provoca la pérdida de una alternancia del ciclo día-noche y representa un factor de riesgo para la coordinación del reloj biológico. El mal funcionamiento del sistema circadiano a largo plazo, desencadena padecimientos crónicos, entre ellos enfermedades metabólicas, cáncer y alteraciones del estado de ánimo (Escobar et al., 2011).


Son varias las condiciones que pueden desencadenar alteraciones circadianas, entre ellas, la más común es el trabajo nocturno, también el síndrome de jet-lag resultante de los viajes trasmeridionales, el alimento y los estímulos luminosos durante la noche. Existe amplia literatura que aborda la relación de la alteración circadiana principalmente asociada con el trabajo nocturno y el jet-lag. Sin embargo, los efectos de la la exposición a la luz artificial durante la noche sobre el sistema circadiano y la salud apenas comienzan a ser estudiados.

Este artículo tiene como objetivo definir en qué consiste el problema de la contaminación lumínica asociada a la luz artificial por la noche. Presentaremos evidencias clínicas y experimentales que indican que la exposición a la luz por la noche es un factor adverso, promotor de alteraciones circadianas y de problemas de salud.

El problema de la contaminación lumínica: el exceso de luz por la noche

La luz es esencial para la vida en la Tierra, es una fuente de energía, de calor, y mantiene los niveles de oxígeno en la atmósfera debido al importante papel que juega en la fotosíntesis.

Por miles de años el hombre ha vivido en un ambiente donde la luz corresponde a la fase de actividad y la noche a la fase de descanso. A lo largo de la historia, la posibilidad de alumbrar la noche dependió de la flama tenue de una hoguera o de una antorcha y fue apenas hace poco más de 100 años que Tomás Alba Edison (1879) inventó la bombilla eléctrica y fue posible alumbrar la noche con una mayor intensidad. El siglo XX se caracterizó por la implementación de luz eléctrica en casas y sitios de trabajo, permitiendo extender las horas de trabajo y estudio a la noche (Chepesiuk, 2009), lo cual modificó también el estilo de vida. Actualmente en las ciudades y pueblos se abusa del uso de la luz por la noche, proceso que conocemos como “contaminación lumínica”. El abuso de iluminación es tal, que se irradia a muchos kilómetros más allá de las ciudades, iluminando los campos, las montañas y la naturaleza en general. Esta luz nocturna afecta patrones de migración de algunas aves e insectos y en algunas especies altera los ritmos de reproducción (Navara y Nelson, 2007). La iluminación urbana también produce “invasión lumínica”, que ocurre cuando la luz del alumbrado público irradia hacia el interior de las casas, ocasionando un nivel de luminosidad constante aun teniendo las luces apagadas (Falchi, Cinzano, Elvidge, Keith y Haim, 2011). Otra fuente de luz nocturna proviene de los aparatos electrónicos como pantallas de televisión, computadoras, teléfonos celulares y tabletas, que irradian luz directamente a los ojos del individuo que los está empleando (ver figura 2).



Figura 2. El teléfono celular es una fuente de luz nocturna, que irradia luz directamente a los ojos del individuo que los está empleando.
Foto: Vladyslav Dukhin.

¿Cuánto es mucha luz?

En un día soleado, la iluminación puede llegar a alcanzar hasta los 100 000 lux, 2 pero en un cuarto bien iluminado la intensidad de la luz alcanza los 1000 lux. Preferentemente en la recámara en donde vamos a dormir y con la luz apagada, la intensidad debiera ser menor a 10 lux.

Inicialmente los especialistas en ritmos circadianos consideraron como dañina una intensidad de luz de 7 000 a 13 000 lux debido a que alteraba al reloj biológico y con ello la expresión de los ritmos circadianos (Boivin, Duffy, Kronauer y Czeisler, 1996). Sin embargo, tomando como referencia el ritmo diario de melatonina, hormona que se secreta solamente por la noche y es inductora del sueño, se determinó que intensidades de hasta 0.2 lux de luz blanca inhiben inmediatamente su producción (Nathan, Burrows y Norman, 1999; Pauley, 2004). Al respecto se ha determinado que la longitud de onda de 440 a 460 Hz que corresponde a la luz azul, aún con intensidad baja de 1 lux, es suficiente para suprimir la secreción de melatonina (Stevens, Brainard, Blask, Lockley y Motta, 2013). Es importante resaltar que las pantallas de televisión, de computadoras y tabletas emiten principalmente longitudes de onda correspondientes al espectro azul (Zeitzer, Dijk, Kronauer, Brown y Czeisler, 2000). En fuentes de luz con un espectro más amplio de longitudes de onda (por ejemplo, lámparas del alumbrado público) una intensidad de 100 lux tiene el mismo efecto. Esta luz también modifica la actividad del NSQ el cual, como ya se describió, utiliza como referencia temporal la alternancia día-noche para sincronizar sus oscilaciones diarias y coordinar los ritmos circadianos del organismo. Actualmente en la mayoría de las casas durante la noche, las fuentes de luz emiten iluminación de hasta 1 000 lux, intensidad suficiente para retrasar el inicio del sueño, causar alteraciones circadianas e inhibir la secreción de melatonina (Reiter, 2006).

Consecuencias de la luz por la noche: estudios clínicos

La luz por la noche promueve un estado de alerta conductual, que retrasa el inicio del sueño y promueve al desvelo. En días de trabajo o escuela estos desvelos tienen como consecuencia que se acorten las horas de descanso y ello ocasiona una privación de sueño crónica, que afecta el rendimiento escolar y laboral (van Cauter et al., 2007). Una preocupación actual es que en sujetos jóvenes, la exposición a luz artificial durante la noche (5 a 10 lux) afecta la calidad del sueño, aumenta la frecuencia de los despertares, la cantidad de sueño superficial y disminuye la cantidad de movimientos oculares rápidos (Cho et al., 2016). En un trabajo pionero de Lewy, Wehr, Goodwin, Newsome, y Markey (1980), se exploraron los efectos de la exposición a diferentes intensidades de luz por la noche en un rango de 0.03 hasta 9.5 lux y se observó que la exposición a todas las intensidades de luz provoca a corto plazo efectos adversos sobre los ritmos hormonales y de temperatura (1996). En un estudio más reciente se reportó que, en personas jóvenes la exposición a la luz por la noche, con una intensidad equivalente a la pantalla de una computadora, suprime la liberación de melatonina (Gooley et al., 2011).

Actualmente un 30% de la población mundial trabaja por la noche (Rajaratnam y Arendt, 2001) y esta es la población más expuesta a la luz nocturna. En trabajadoras nocturnas se ha descrito una mayor propensión a desarrollar cáncer de mama (He, Anand, Ebell, Vena y Robb, 2015) y se ha determinado que el haber trabajado 15 años o más en turnos rotatorios o nocturnos incrementa hasta un 28% el riesgo de padecer cáncer de pulmón en mujeres fumadoras (Schernhammer, Feskanich, Liang y Han, 2013). En enfermeras que trabajaron turnos nocturnos y estuvieron expuestas a la luz brillante mientras dormían, se demostró que los niveles de melatonina eran menores en comparación con enfermeras que trabajaron turnos diurnos (Grundy et al., 2009). Igualmente, entre los trabajadores nocturnos masculinos hay mayor propensión a padecer cáncer de próstata, además de presentar un mayor riesgo de eventos cardiovasculares con riesgo de infarto (Sigurdardottir et al., 2012). El trabajador nocturno también tiene mayor predisposición a la acumulación de adiposidad, sobrepeso y elevada predisposición a desarrollar enfermedades metabólicas incluyendo diabetes (Knutsson, 2003).

A nivel de la conducta, se ha reportado mayor propensión a cambios en el estado de ánimo, caracterizados por mayor irritabilidad, fatiga y dificultad para concentrarse, además de mayor vulnerabilidad a desencadenar depresión (Edgar y McClung, 2013; Germain y Kupfer, 2008). En estos individuos también se ha reportado mayor vulnerabilidad de incurrir en la ingestión de drogas y alcohol (Morikawa et al., 2013). Es difícil discernir la contribución de la luz por la noche sobre la cantidad de alteraciones que presenta el trabajador nocturno, ya que estos individuos además de la contaminación lumínica, están expuestos a privación de sueño y alteraciones circadianas, que por sí mismos son factores que desencadenan muchas de estas alteraciones fisiológicas y de la conducta.



Para lograr deslindar el efecto de la luz nocturna sobre el metabolismo, un estudio realizado con una población de la región de Nara, en Japón, comparó personas que se exponían a bajos o nulos niveles de luz por la noche (menos de 3 lux) con personas que se exponían a niveles mayores de 3 lux (Obayashi et al., 2013). El grupo que se exponía a mayor intensidad de luz presentó una mayor incidencia de obesidad y alteraciones en los niveles de lípidos circulantes, confirmando que la exposición a la luz por la noche desencadena disfunción metabólica.

Un espacio para determinar los efectos nocivos de la luz por la noche, son las unidades de cuidados intensivos en los hospitales, ya que en general éstas se mantienen siempre con la luz prendida para permitir al personal médico y de enfermería una supervisión eficiente de los pacientes. En un estudio realizado en la unidad de terapia intensiva neonatal del Hospital Juárez de México, nuestro grupo demostró que los bebés prematuros internados debido a bajo peso corporal crecen y maduran más lentamente en condiciones de luz constante, en comparación con los bebés prematuros expuestos a un ciclo de luz-oscuridad. Para lograr esto, a algunos bebés se les colocó durante la noche un casco de acrílico con una cubierta de tela que producía penumbra sobre su cabeza y ojos. Comparados con bebés que no recibieron este tratamiento, a las tres semanas de estancia en la unidad, los bebés expuestos a la oscuridad por la noche habían ganado 150 g más de peso y el tiempo de estancia hospitalaria se redujo a la mitad, siendo para este grupo un promedio de 30 días para ser dados de alta y para el grupo testigo de 60 días (Vasquez-Ruiz et al., 2014). Otros estudios realizados en diferentes unidades de terapia intensiva han reportado efectos similares, demostrando que la oscuridad por la noche mejora la capacidad de los bebés para asimilar el alimento y por lo mismo logran aumentar de peso para ser dados de alta (Blackburn y Patteson, 1991; Rivkees, Mayes, Jacobs, y Gross, 2004). Estos hallazgos son un claro ejemplo de la importancia que tiene la oscuridad nocturna desde los primeros días de vida.

Los modelos experimentales corroboran los efectos adversos de la luz por la noche sobre la salud

En años recientes diversos grupos dedicados a la investigación básica han abordado los efectos de la exposición a la luz nocturna sobre la salud con modelos experimentales, principalmente en roedores.

Se sabe que durante la etapa fetal la función circadiana depende de señales maternas, especialmente de la melatonina, la cual es una de las pocas hormonas capaces de atravesar la barrera placentaria (Seron-Ferre et al., 2012). La exposición de la hembra gestante a luz por la noche abole su propia producción de melatonina y repercute en los ritmos circadianos que exhiben sus crías, los cuales presentan bajo crecimiento intrauterino y deficiencia de secreción de corticosterona en etapas postnatales (Mendez et al., 2012).

Canal, Mohammed y Rodriguez (2009) demostraron que la luz por la noche durante el desarrollo daña al reloj biológico (núcleo supraquiasmático, NSQ) de forma permanente, lo que resulta en una menor cantidad de neuronas y células gliales en el NSQ. Las crías de ratón expuestas a luz por la noche durante la lactancia fueron incapaces de exhibir ritmos circadianos coordinados a lo largo de su vida (Ohta, Mitchell y McMahon, 2006). Roman y Karlsson (2013) demostraron que ratas expuestas a ciclos alterados de luz durante la lactancia presentaban durante su etapa adulta conductas de ansiedad, alteraciones en la interacción social y un rendimiento deficiente en pruebas de reconocimiento de formas. Ohta y colaboradores proponen que durante el desarrollo el exceso de luz por la noche altera la organización cerebral y puede ser un factor de riesgo para desarrollar depresión, ansiedad y otras alteraciones del estado de ánimo (2006).

La luz por la noche también altera la expresión de ritmos circadianos en roedores adultos. A nivel del NSQ, se ha descrito que condiciones de luz tenue por la noche inhiben totalmente la actividad de las células que reciben las proyecciones de la retina y que normalmente mantienen la sincronía entre el ciclo luz-oscuridad y el funcionamiento del NSQ (Isobe y Nishino, 1998). A partir del tercer día después de estar bajo la influencia de la luz por la noche, el NSQ pierde más del 50% de su actividad rítmica (Coomans et al., 2013); y después de dos semanas en esta condición, también las células que transmiten ritmicidad al resto del organismo muestran baja actividad (Isobe y Nishino, 1998).

En nuestro grupo de investigación encontramos que después de ocho semanas de condiciones de luz por la noche, las ratas adultas perdían el ritmo circadiano de actividad y temperatura corporal. Esto se asoció con niveles muy bajos de activación neuronal en el NSQ y pérdida del ritmo de melatonina. Con una prueba de consumo de azúcar determinamos conductas tipo depresivas. También observamos aumentadas las conductas de ansiedad, lo cual nos llevó a proponer que las ratas bajo condiciones de luz por la noche desarrollan conductas similares a la depresión (Tapia-Osorio et al., 2013). Los niveles altos de ansiedad y depresión asociados con la exposición crónica de luz por la noche son el efecto más consistente reportado en modelos experimentales (Fonken et al., 2009; Fonken, Kitsmiller, Smale y Nelson, 2012; Fonken y Nelson, 2013; Ma et al., 2007; Tapia-Osorio et al., 2013). Además, se ha reportado que la luz por la noche disminuye el rendimiento en pruebas de memoria espacial en ratas (Fujioka et al., 2011).

A mediano plazo (unas cuantas semanas) los animales expuestos a luz tenue (5 lux) por la noche muestran índices de síndrome metabólico y sobrepeso (Fonken, Aubrecht, Melendez-Fernandez, Weil y Nelson, 2013; Fonken y Nelson, 2014). Aemás, muestran mayor ganancia de masa corporal, mayor acumulación de tejido adiposo visceral (Dauchy et al., 2010; Wideman y Murphy, 2009) y una disminución en la secreción de insulina (Qian, Block, Colwell y Matveyenko, 2013) que tiene como consecuencia un deficiente manejo de glucosa.

Recientemente, nuestro grupo evaluó los efectos de la exposición a luz por la noche sobre el desarrollo de tumores y el sistema inmune. Para explorar lo anterior, se expusieron ratas a luz por la noche (LL) y se compararon con ratas sometidas a un ciclo regular de luz-oscuridad (LD) durante cinco semanas. La exposición a LL indujo sobrepeso, elevados niveles de triglicéridos y glucosa en la sangre, así como intolerancia a la glucosa. Cuando las infectamos con un componente de una bacteria, las ratas LL aumentaron los signos de enfermedad (fiebre, pérdida de peso y del apetito) y mostraron elevados. De forma importante, las ratas expuestas a LL desarrollaron tumores de mayor volumen al ser inoculadas con células tumorales. En los tumores extraídos de los animales expuestos a LL, se encontraron aumentados genes involucrados en el crecimiento tumoral. Lo anterior sugiere que la exposición a luz por la noche provee un ambiente metabólico propicio en el hospedero el cual favorece el crecimiento de los tumores (Guerrero-Vargas et al., 2017).

Con base en lo anterior, los modelos experimentales han confirmado que la luz por la noche, aún de baja intensidad, promueve perturbaciones fisiológicas y conductuales, aumenta el riesgo de padecer alteraciones en el metabolismo de carbohidratos y lípidos, altera los patrones de descanso e incluso la respuesta inmune, lo cual promueve enfermedades crónicas como ateroesclerosis, cáncer, diabetes tipo 2 y problemas que derivan en síndrome metabólico (Fonken, Weil, & Nelson, 2013; Zimberg, Fernandes Junior, Crispim, Tufik, & de Mello, 2012).

Conclusiones y perspectivas

Los datos experimentales apuntan a que la luz por la noche es un factor que desencadena enfermedades crónicas. Actualmente hemos optado por un estilo de vida similar al del trabajador nocturno, ya que permanecemos despiertos hasta muy entrada la noche y durante ese periodo estamos expuestos a la luz de las computadoras, la televisión o el celular, además de la luz blanca de los focos en casa. La falta de oscuridad promovida por una excesiva exposición a diferentes intensidades de luz provoca alteraciones circadianas y puede inducir diversos problemas de salud. Como hemos discutido, diversos estudios clínicos reportan que la exposición a luz por la noche se asocia con una mayor incidencia de depresión, así como un aumento en el sobrepeso, obesidad e incluso desarrollo de tumores.

La inhibición de la producción de melatonina, las alteraciones circadianas y del sueño son sólo algunos de los posibles mecanismos por los cuales la luz por la noche afecta la fisiología de los individuos y, por lo tanto, promueve el desarrollo de enfermedades (ver figura 3). Los mecanismos exactos que asocian la exposición a la luz por la noche con el desarrollo de enfermedades aún son desconocidos.


luz de la noche

Una limitación importante de los estudios con los que se cuenta hasta el momento es que están asociados otros factores que también afectan la salud. Entre ellos la mala calidad de sueño que se asocia al estar despierto y con la luz prendida. Para algunos individuos se asocia también con el trabajo nocturno que conlleva actividad y alimentación en horas de dormir.

Por otro lado, la limitación en el uso de animales experimentales radica en que, en su mayoría, los roedores son de actividad nocturna. En este sentido y contrario al humano, la exposición a la luz por la noche coincide con su fase de actividad normal. Para poder remediar esta incongruencia, hacen falta estudios con roedores diurnos que semejen mejor las condiciones humanas.

Ante el problema de la exposición a la luz por la noche que enfrenta la sociedad moderna, es necesario contar con más material de divulgación que permita informar a la población sobre el riesgo que representa la contaminación lumínica para la salud y sobre la relevancia de respetar el sueño y descanso por la noche. Respetar la oscuridad por la noche oscureciendo las habitaciones en donde dormimos es una medida simple, que mejorará el descanso y, por lo tanto, el estado de salud física y mental.

Financiamiento

Natalí N Guerrero-Vargas recibe apoyo de PAPIIT-DGAPA-UNAM proyecto IA208818 y Carolina Escobar recibe apoyo de CONACyT 239403.

Conflictos de interés

Los autores declaran que no existen posibles conflictos de intereses o cualquier fuente posible de conflicto con otros individuos o empresas.

Referencias

  • Baez-Ruiz, A., Guerrero-Vargas, N. N., Cazarez-Marquez, F., Sabath, E., Basualdo, M. D. C., Salgado-Delgado, R., . . . Buijs, R. M. (2017). Food in synchrony with melatonin and corticosterone relieves constant light disturbed metabolism. J Endocrinol, 235(3), 167-178. DOI: http://doi.org/10.1530/joe-17-0370
  • Blackburn, S., & Patteson, D. (1991). Effects of cycled light on activity state and cardiorespiratory function in preterm infants. The Journal of Perinatal & Neonatal Nursing, 4(4), 47-54. Recuperado de https://www.ncbi.nlm.nih.gov/pubmed/1993985
  • Boivin, D. B., Duffy, J. F., Kronauer, R. E. y Czeisler, C. A. (1996). Dose-response relationships for resetting of human circadian clock by light. Nature, 379(6565), 540-542. DOI: http://doi.org/10.1038/379540a0
  • Buijs, R. M. y Kalsbeek, A. (2001). Hypothalamic integration of central and peripheral clocks. Nat Rev Neurosci, 2(7), 521-526. DOI: http://doi.org/10.1038/35081582
  • Buijs, R. M., van Eden, C. G., Goncharuk, V. D. y Kalsbeek, A. (2003). The biological clock tunes the organs of the body: timing by hormones and the autonomic nervous system. J Endocrinol, 177(1), 17-26.
  • Canal, M. M., Mohammed, N. M., & Rodríguez, J. J. (2009). Early programming of astrocyte organization in the mouse suprachiasmatic nuclei by light. Chronobiology International. The Journal of Biological and Medical Rhythm Research, 26(8), 1545-1558. DOI: http://doi.org/10.3109/07420520903398542
  • Chepesiuk, R. (2009). Missing the dark: health effects of light pollution. Environmental Health Perspectives, 117(1), A20-27. Recuperado de https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2627884/
  • Cho, C. H., Lee, H. J., Yoon, H. K., Kang, S. G., Bok, K. N., Jung, K. Y., Kim. L. y Lee, E. I. (2016). Exposure to dim artificial light at night increases REM sleep and awakenings in humans. Chronobiology International. The Journal of Biological and Medical Rhythm Research, 33(1), 117-123. DOI: http://doi.org/10.3109/07420528.2015.1108980
  • Coomans, C. P., van den Berg, S. A., Houben, T., van Klinken, J. B., van den Berg, R., Pronk, A. C., . . . Meijer, J. H. (2013). Detrimental effects of constant light exposure and high-fat diet on circadian energy metabolism and insulin sensitivity. Faseb j, 27(4), 1721-1732. DOI: http://doi.org/10.1096/fj.12-210898
  • Danilenko, K. V., Cajochen, C., & Wirz-Justice, A. (2003). Is sleep per se a zeitgeber in humans? Journal of Biological Rhythms, 18(2), 170-178. DOI: http://doi.org/10.1177/0748730403251732
  • Dauchy, R. T., Dauchy, E. M., Tirrell, R. P., Hill, C. R., Davidson, L. K., Greene, M. W., Tirrell, P.C., Wu, J., Sauer, L. A. y Blask, D. E. (2010). Dark-phase light contamination disrupts circadian rhythms in plasma measures of endocrine physiology and metabolism in rats. Comparative Medicine, 60(5), 348-356. Recuperado de https://www.ncbi.nlm.nih.gov/pubmed/21262119
  • Edgar, N. y McClung, C. A. (2013). Major depressive disorder: a loss of circadian synchrony? Bioessays, 35(11), 940-944. DOI: http://doi.org/10.1002/bies.201300086
  • Escobar, C., Salgado-Delgado, R., Gonzalez-Guerra, E., Tapia Osorio, A., Angeles-Castellanos, M. y Buijs, R. M. (2011). Circadian disruption leads to loss of homeostasis and disease. Sleep Disord, 2011, 964510. DOI: http://doi.org/10.1155/2011/964510
  • Falchi, F., Cinzano, P., Elvidge, C. D., Keith, D. M. y Haim, A. (2011). Limiting the impact of light pollution on human health, environment and stellar visibility. Journal of Environmental Management, 92(10), 2714-2722. DOI: http://doi.org/10.1016/j.jenvman.2011.06.029
  • Fonken, L. K., Aubrecht, T. G., Melendez-Fernandez, O. H., Weil, Z. M. y Nelson, R. J. (2013). Dim light at night disrupts molecular circadian rhythms and increases body weight. Journal of Biological Rhythms, 28(4), 262-271. DOI: http://doi.org/10.1177/0748730413493862
  • Fonken, L. K., Finy, M. S., Walton, J. C., Weil, Z. M., Workman, J. L., Ross, J. y Nelson, R. J. (2009). Influence of light at night on murine anxiety- and depressive-like responses. Behav Brain Res, 205(2), 349-354. DOI: http://doi.org/10.1016/j.bbr.2009.07.001
  • Fonken, L. K., Kitsmiller, E., Smale, L. y Nelson, R. J. (2012). Dim nighttime light impairs cognition and provokes depressive-like responses in a diurnal rodent. J Biol Rhythms, 27(4), 319-327. DOI: http://doi.org/10.1177/0748730412448324
  • Fonken, L. K. y Nelson, R. J. (2013). Dim light at night increases depressive-like responses in male C3H/HeNHsd mice. Behav Brain Res, 243, 74-78. DOI: http://doi.org/10.1016/j.bbr.2012.12.046
  • Fonken, L. K. y Nelson, R. J. (2014). The effects of light at night on circadian clocks and metabolism. Endocr Rev, 35(4), 648-670. DOI: http://doi.org/10.1210/er.2013-1051
  • Fonken, L. K., Weil, Z. M. y Nelson, R. J. (2013). Mice exposed to dim light at night exaggerate inflammatory responses to lipopolysaccharide. Brain Behav Immun, 34, 159-163. DOI: http://doi.org/10.1016/j.bbi.2013.08.011
  • Fujioka, A., Fujioka, T., Tsuruta, R., Izumi, T., Kasaoka, S., & Maekawa, T. (2011). Effects of a constant light environment on hippocampal neurogenesis and memory in mice. Neurosci Lett, 488(1), 41-44. DOI: http://doi.org/10.1016/j.neulet.2010.11.001
  • Germain, A. y Kupfer, D. J. (2008). Circadian rhythm disturbances in depression. Human Psychopharmacology: Clinical & Experimental, 23(7), 571-585. DOI: http://doi.org/10.1002/hup.964
  • Golombek, D. A. y Rosenstein, R. E. (2010). Physiology of circadian entrainment. Physiol Rev, 90(3), 1063-1102. DOI: http://doi.org/10.1152/physrev.00009.2009
  • Gonciarz, M., Gonciarz, Z., Bielanski, W., Mularczyk, A., Konturek, P. C., Brzozowski, T. y Konturek, S. J. (2010). The pilot study of 3-month course of melatonin treatment of patients with nonalcoholic steatohepatitis: effect on plasma levels of liver enzymes, lipids and melatonin. J Physiol Pharmacol, 61(6), 705-710.
  • Gooley, J. J., Chamberlain, K., Smith, K. A., Khalsa, S. B., Rajaratnam, S. M., Van Reen, E., Zeitzer, J. M., Czeisler, C. A. y Lockley, S. W. (2011). Exposure to room light before bedtime suppresses melatonin onset and shortens melatonin duration in humans. The Journal of Clinical Endocrinology & Metabolism, 96(3), E463-472. DOI: http://doi.org/10.1210/jc.2010-2098
  • Grone, B. P., Chang, D., Bourgin, P., Cao, V., Fernald, R. D., Heller, H. C., & Ruby, N. F. (2011). Acute light exposure suppresses circadian rhythms in clock gene expression. J Biol Rhythms, 26(1), 78-81. DOI: http://doi.org/10.1177/0748730410388404
  • Grundy, A., Sanchez, M., Richardson, H., Tranmer, J., Borugian, M., Graham, C. H. y Aronson, K. J. (2009). Light intensity exposure, sleep duration, physical activity, and biomarkers of melatonin among rotating shift nurses. Chronobiology International. The Journal of Biological and Medical Rhythm Research, 26(7), 1443-1461. DOI: http://doi.org/10.3109/07420520903399987
  • Guerrero-Vargas, N. N., Guzman-Ruiz, M., Fuentes, R., Garcia, J., Salgado-Delgado, R., Basualdo Mdel, C.,… Buijs, R. M. (2015). Shift Work in Rats Results in Increased Inflammatory Response after Lipopolysaccharide Administration: A Role for Food Consumption. J Biol Rhythms, 30(4), 318-330. DOI: http://doi.org/10.1177/0748730415586482
  • Guerrero-Vargas, N. N., Navarro-Espindola, R., Guzman-Ruiz, M. A., Basualdo, M. D. C., Espitia-Bautista, E., Lopez-Bago, A., . . . Escobar, C. (2017). Circadian disruption promotes tumor growth by anabolic host metabolism; experimental evidence in a rat model. BMC Cancer, 17(1), 625. DOI: http://doi.org/10.1186/s12885-017-3636-3
  • He, C., Anand, S. T., Ebell, M. H., Vena, J. E. y Robb, S. W. (2015). Circadian disrupting exposures and breast cancer risk: a meta-analysis. International Archives of Occupational and Environmental Health, 88(5), 533-547. DOI: http://doi.org/10.1007/s00420-014-0986-x
  • Ikeda, M., Sagara, M. y Inoue, S. (2000). Continuous exposure to dim illumination uncouples temporal patterns of sleep, body temperature, locomotion and drinking behavior in the rat. Neurosci Lett, 279(3), 185-189.
  • Isobe, Y. y Nishino, H. (1998). AVP rhythm in the suprachiasmatic nucleus in relation to locomotor activity under constant light. Peptides, 19(5), 827-832. Recuperado de https://www.ncbi.nlm.nih.gov/pubmed/9663447
  • Kalsbeek, A., Palm, I. F., La Fleur, S. E., Scheer, F. A., Perreau-Lenz, S., Ruiter, M., Kreier, F, Cailotto, C. y Buijs, R. M. (2006). SCN outputs and the hypothalamic balance of life. Journal of Biological Rhythms, 21(6), 458-469. DOI: http://doi.org/10.1177/0748730406293854
  • Killick, R., Banks, S., & Liu, P. Y. (2012). Implications of sleep restriction and recovery on metabolic outcomes. J Clin Endocrinol Metab, 97(11), 3876-3890. doi:10.1210/jc.2012-1845.
  • Klerman, E. B., Rimmer, D. W., Dijk, D. J., Kronauer, R. E., Rizzo, J. F., 3rd, y Czeisler, C. A. (1998). Nonphotic entrainment of the human circadian pacemaker. Am J Physiol, 274(4 Pt 2), R991-996.
  • Knutsson, A. (2003). Health disorders of shift workers. Occupational Medicine, 53(2), 103-108. DOI: http://doi.org/10.1093/occmed/kqg048
  • Lam, R. W. (2006). Sleep disturbances and depression: a challenge for antidepressants. Int Clin Psychopharmacol, 21 Suppl 1, S25-29. doi:10.1097/01.yic.0000195658.91524.61.
  • Leproult, R., & Van Cauter, E. (2010). Role of sleep and sleep loss in hormonal release and metabolism. Endocr Dev, 17, 11-21. doi:10.1159/000262524.
  • Lewy, A. J., Wehr, T. A., Goodwin, F. K., Newsome, D. A. y Markey, S. P. (1980). Light suppresses melatonin secretion in humans. Science, 210(4475), 1267-1269. Recuperado de https://www.ncbi.nlm.nih.gov/pubmed/7434030
  • Luchetti, F., Canonico, B., Betti, M., Arcangeletti, M., Pilolli, F., Piroddi, M., . . . Galli, F. (2010). Melatonin signaling and cell protection function. Faseb j, 24(10), 3603-3624. doi:10.1096/fj.10-154450.
  • Ma, W. P., Cao, J., Tian, M., Cui, M. H., Han, H. L., Yang, Y. X., & Xu, L. (2007). Exposure to chronic constant light impairs spatial memory and influences long-term depression in rats. Neurosci Res, 59(2), 224-230. DOI: http://doi.org/10.1016/j.neures.2007.06.1474
  • Mendez, N., Abarzua-Catalan, L., Vilches, N., Galdames, H. A., Spichiger, C., Richter, H. G., . . . Torres-Farfan, C. (2012). Timed maternal melatonin treatment reverses circadian disruption of the fetal adrenal clock imposed by exposure to constant light. PLoS One, 7(8), e42713. DOI: http://doi.org/10.1371/journal.pone.0042713
  • Morikawa, Y., Sakurai, M., Nakamura, K., Nagasawa, S. Y., Ishizaki, M., Kido, T., Naruse, Y. y Nakagawa, H. (2013). Correlation between shift-work-related sleep problems and heavy drinking in Japanese male factory workers. Alcohol and Alcoholism, 48(2), 202-206. DOI: http://doi.org/10.1093/alcalc/ags128
  • Nathan, P. J., Burrows, G. D. y Norman, T. R. (1999). Melatonin sensitivity to dim white light in affective disorders. Neuropsychopharmacology, 21(3), 408-413. DOI: http://doi.org/10.1016/s0893-133x(99)00018-4
  • Navara, K. J., y Nelson, R. J. (2007). The dark side of light at night: physiological, epidemiological, and ecological consequences. Journal of Pineal Research, 43(3), 215-224. DOI: http://doi.org/10.1111/j.1600-079X.2007.00473.x
  • Navarro-Alarcon, M., Ruiz-Ojeda, F. J., Blanca-Herrera, R. M., MM, A. S., Acuna-Castroviejo, D., Fernandez-Vazquez, G., & Agil, A. (2014). Melatonin and metabolic regulation: a review. Food Funct, 5(11), 2806-2832. doi:10.1039/c4fo00317a.
  • Nir, I. (2003). Melatonin for the treatment of disorders in circadian rhythm and sleep: could it form a basis for medication? Receptors Channels, 9(6), 379-385.
  • Obayashi, K., Saeki, K., Iwamoto, J., Okamoto, N., Tomioka, K., Nezu, S., Ikada, Y. y Kurumatani, N. (2013). Exposure to light at night, nocturnal urinary melatonin excretion, and obesity/dyslipidemia in the elderly: a cross-sectional analysis of the HEIJO-KYO study. The Journal of Clinical Endocrinology & Metabolism, 98(1), 337-344. DOI: http://doi.org/10.1210/jc.2012-2874
  • Ohta, H., Mitchell, A. C., & McMahon, D. G. (2006). Constant light disrupts the developing mouse biological clock. Pediatric research, 60(3), 304-308. DOI: http://doi.org/10.1203/01.pdr.0000233114.18403.66
  • Pandi-Perumal, S. R., Srinivasan, V., Maestroni, G. J., Cardinali, D. P., Poeggeler, B., & Hardeland, R. (2006). Melatonin: Nature’s most versatile biological signal? Febs j, 273(13), 2813-2838. doi:10.1111/j.1742-4658.2006.05322.x.
  • Pauley, S. M. (2004). Lighting for the human circadian clock: recent research indicates that lighting has become a public health issue. Medical Hypotheses, 63(4), 588-596. DOI: http://doi.org/10.1016/j.mehy.2004.03.020
  • Qian, J., Block, G. D., Colwell, C. S. yMatveyenko, A. V. (2013). Consequences of exposure to light at night on the pancreatic islet circadian clock and function in rats. Diabetes, 62(10), 3469-3478. DOI: http://doi.org/10.2337/db12-1543.
  • Rajaratnam, S. M. y Arendt, J. (2001). Health in a 24-h society. The Lancet, 358(9286), 999-1005. DOI: http://doi.org/10.1016/s0140-6736(01)06108-6
  • Rasmussen, D. D., Boldt, B. M., Wilkinson, C. W., Yellon, S. M., & Matsumoto, A. M. (1999). Daily melatonin administration at middle age suppresses male rat visceral fat, plasma leptin, and plasma insulin to youthful levels. Endocrinology, 140(2), 1009-1012. DOI: http://doi.org/10.1210/endo.140.2.6674
  • Reiter, R. (2006). Contaminación lumínica: Supresión del ritmo circadiano de melatonina y sus consecuencias para la salud. Cronobiología básica y clínica (pp. 269-289). Madrid: Madrid JA, Rol de Lama A.
  • Ribeiro, D. C., Hampton, S. M., Morgan, L., Deacon, S., & Arendt, J. (1998). Altered postprandial hormone and metabolic responses in a simulated shift work environment. J Endocrinol, 158(3), 305-310.
  • Rivkees, S. A., Mayes, L., Jacobs, H. y Gross, I. (2004). Rest-activity patterns of premature infants are regulated by cycled lighting. Pediatrics, 113(4), 833-839. Recuperado de http://pediatrics.aappublications.org/content/113/4/833?download=true
  • Roman, E. y Karlsson, O. (2013). Increased anxiety-like behavior but no cognitive impairments in adult rats exposed to constant light conditions during perinatal development. Upsala Journal of Medical Sciences, 118(4), 222-227. DOI: http://doi.org/10.3109/03009734.2013.821191
  • Salgado-Delgado, R., Angeles-Castellanos, M., Buijs, M. R., & Escobar, C. (2008). Internal desynchronization in a model of night-work by forced activity in rats. Neuroscience, 154(3), 922-931. doi:10.1016/j.neuroscience.2008.03.066.
  • Salgado-Delgado, R., Angeles-Castellanos, M., Saderi, N., Buijs, R. M., & Escobar, C. (2010). Food intake during the normal activity phase prevents obesity and circadian desynchrony in a rat model of night work. Endocrinology, 151(3), 1019-1029. doi:10.1210/en.2009-0864.
  • Schernhammer, E. S., Feskanich, D., Liang, G. y Han, J. (2013). Rotating night-shift work and lung cancer risk among female nurses in the United States. American Journal of Epidemiology, 178(9), 1434-1441. DOI: http://doi.org/10.1093/aje/kwt155
  • Seron-Ferre, M., Mendez, N., Abarzua-Catalan, L., Vilches, N., Valenzuela, F. J., Reynolds, H. E., Llanos, A., Rojas, A., Valenzuela, G. y Torres-Farfan, C. (2012). Circadian rhythms in the fetus. Molecular and Cellular Endocrinology, 349(1), 68-75. DOI: http://doi.org/10.1016/j.mce.2011.07.039
  • Shuboni, D., & Yan, L. (2010). Nighttime dim light exposure alters the responses of the circadian system. Neuroscience, 170(4), 1172-1178. DOI: http://doi.org/10.1016/j.neuroscience.2010.08.009
  • Sigurdardottir, L. G., Valdimarsdottir, U. A., Fall, K., Rider, J. R., Lockley, S. W., Schernhammer, E., & Mucci, L. A. (2012). Circadian disruption, sleep loss, and prostate cancer risk: a systematic review of epidemiologic studies. Cancer Epidemiology, Biomarkers & Prevention, 21(7), 1002-1011. DOI: http://doi.org/10.1158/1055-9965.Epi-12-0116
  • Spiegel, K., Tasali, E., Leproult, R., Scherberg, N., & Van Cauter, E. (2011). Twenty-four-hour profiles of acylated and total ghrelin: relationship with glucose levels and impact of time of day and sleep. J Clin Endocrinol Metab, 96(2), 486-493. doi:10.1210/jc.2010-1978.
  • Stevens, R. G., Brainard, G. C., Blask, D. E., Lockley, S. W. y Motta, M. E. (2013). Breast cancer and circadian disruption from electric lighting in the modern world. CA: A Cancer Journal for Clinicians, 64(3), 207-218. DOI: http://doi.org/10.3322/caac.21218
  • Tapia-Osorio, A., Salgado-Delgado, R., Angeles-Castellanos, M., & Escobar, C. (2013). Disruption of circadian rhythms due to chronic constant light leads to depressive and anxiety-like behaviors in the rat. Behav Brain Res, 252, 1-9. DOI: http://doi.org/10.1016/j.bbr.2013.05.028
  • Turek, F. W. (2007). From circadian rhythms to clock genes in depression. Int Clin Psychopharmacol, 22 Suppl 2, S1-8. DOI: http://doi.org/10.1097/01.yic.0000277956.93777.6a
  • van Cauter, E., Holmback, U., Knutson, K., Leproult, R., Miller, A., Nedeltcheva, A., Pannain, S., • Penev, P., • Tasali, E. y Spiegel, K. (2007). Impact of sleep and sleep loss on neuroendocrine and metabolic function. Hormone Research in Paediatrics, 67 Suppl 1, 2-9. DOI: http://doi.org/10.1159/000097543
  • Vasquez-Ruiz, S., Maya-Barrios, J. A., Torres-Narvaez, P., Vega-Martinez, B. R., Rojas-Granados, A., Escobar, C. y Angeles-Castellanos, M. (2014). A light/dark cycle in the NICU accelerates body weight gain and shortens time to discharge in preterm infants. Early Human Development, 90(9), 535-540. DOI: http://doi.org/10.1016/j.earlhumdev.2014.04.015
  • Vinogradova, I. A., Anisimov, V. N., Bukalev, A. V., Semenchenko, A. V., & Zabezhinski, M. A. (2009). Circadian disruption induced by light-at-night accelerates aging and promotes tumorigenesis in rats. Aging (Albany NY), 1(10), 855-865. doi:10.18632/aging.100092.
  • Wideman, C. H. y Murphy, H. M. (2009). Constant light induces alterations in melatonin levels, food intake, feed efficiency, visceral adiposity, and circadian rhythms in rats. Nutritional Neuroscience, 12(5), 233-240. DOI: http://doi.org/10.1179/147683009×423436
  • Wolden-Hanson, T., Mitton, D. R., McCants, R. L., Yellon, S. M., Wilkinson, C. W., Matsumoto, A. M., & Rasmussen, D. D. (2000). Daily melatonin administration to middle-aged male rats suppresses body weight, intraabdominal adiposity, and plasma leptin and insulin independent of food intake and total body fat. Endocrinology, 141(2), 487-497. doi:10.1210/endo.141.2.7311.
  • Zeitzer, J. M., Dijk, D. J., Kronauer, R., Brown, E. y Czeisler, C. (2000). Sensitivity of the human circadian pacemaker to nocturnal light: melatonin phase resetting and suppression. The Journal of Physiology, 526 Pt 3, 695-702. Recuperado de https://www.ncbi.nlm.nih.gov/pubmed/10922269
  • Zimberg, I. Z., Fernandes Junior, S. A., Crispim, C. A., Tufik, S. y de Mello, M. T. (2012). Metabolic impact of shift work. Work, 41 Suppl 1, 4376-4383. DOI:10.3233/wor-2012-0733-4376.
Show Buttons
Hide Buttons

Revista Digital Universitaria Publicación bimestral Vol. 18, Núm. 6julio-agosto 2017 ISSN: 1607 - 6079