La promesa de la nanotecnología en la purificación del agua
DOI:
https://doi.org/10.22201/ceide.16076079e.2026.27.1.4Palabras clave:
nanotecnología, purificación del agua, sostenibilidad, retos ambientaleResumen
La nanotecnología abre un horizonte prometedor para enfrentar uno de los mayores desafíos de nuestra época: el acceso a agua limpia y segura. Al manipular materiales en una escala diminuta (millones de veces más pequeños que un grano de arena), las nanopartículas y los nanomateriales resultan altamente eficaces para eliminar contaminantes, patógenos y metales pesados del agua. Este artículo explora los orígenes y la evolución de las tecnologías de tratamiento de agua hasta la irrupción de la nanotecnología. Aunque estos logros son cruciales, es importante considerar los retos relacionados con la seguridad, el impacto ambiental de los nanomateriales y su regulación, para garantizar un uso sostenible a largo plazo.
Citas
Ball, P. (2009, 8 de enero). Feynman’s fancy. Chemistry World. https://www.chemistryworld.com/features/feynmans-fancy/3004592.article
Bayda, S., Adeel, M., Tuccinardi, T., Cordani, M., y Rizzolio, F. (2019, 27 de diciembre). The History of Nanoscience and Nanotechnology: From Chemical-Physical Applications to Nanomedicine. Molecules, 25(1), 112. https://doi.org/10.3390/molecules25010112
Bousselmi, L., Geissen, S.-U., y Schroeder, H. (2004, 1 de febrero). Textile wastewater treatment and reuse by solar catalysis: results from a pilot plant in Tunisia. Water Science and Technology, 49(4), 331-337. https://doi.org/10.2166/wst.2004.0298
Convención aneas. (2025, 1 de julio). sapal empleará nanotecnología para el tratamiento de agua. Convención aneas. https://convencionaneas.com/sapal-empleara-nanotecnologia-para-el-tratamiento-de-agua/
Gottschalk, F., y Nowack, B. (2011, 9 de marzo). The release of engineered nanomaterials to the environment. Journal of Environmental Monitoring, 13(5), 1145. https://doi.org/10.1039/c0em00547a
Hall, E. L., y Dietrich, A. M. (2000, 1 de junio). A brief history of drinking water. Opflow, 26(1), 46-49. https://doi.org/10.1002/j.1551-8701.2000.tb02243.x
Jadhav, A. S. (2014). Advancement in drinking water treatments from ancient times. International Journal of Science, Environment and Technology, 3(4), 1415–1418. https://www.ijset.net/journal/374.pdf
Kumar, S. (2023). Smart and innovative nanotechnology applications for water purification. Hybrid Advances, 3, 100044. https://doi.org/10.1016/j.hybadv.2023.100044
Lokesh, B. J., Rudresh, A. N., y Radhika, N. (2019). Wastewater treatment using bio-nanotechnology. World Journal of Advanced Research and Reviews, 1(2), 85-91. https://doi.org/10.30574/wjarr.2019.1.2.0120
Mishra, S., y Sundaram, B. (2023, mayo). Efficacy and challenges of carbon nanotube in wastewater and water treatment. Environmental Nanotechnology, Monitoring and Management, 19, 100764. https://doi.org/10.1016/j.enmm.2022.100764
Mukherjee, A., Sengupta, M. K., Hossain, M. A., Ahamed, S., Das, B., Nayak, B., Lodh, D., Rahman, M. M., y Chakraborti, D. (2016, junio). Arsenic contamination in groundwater: a global perspective with emphasis on Asian scenario. Journal of Health, Population and Nutrition, 24(2), 142-163. https://www.jstor.org/stable/23499353
Nagar, A., y Pradeep, T. (2020, 20 de mayo). Clean Water through Nanotechnology: Needs, Gaps, and Fulfillment. acs Nano, 14(6), 6420-6435. https://doi.org/10.1021/acsnano.9b01730.
Qu, X., Brame, J., Li, Q., y Alvarez, P. J. J. (2012, 23 de junio). Nanotechnology for a Safe and Sustainable Water Supply: Enabling Integrated Water Treatment and Reuse. Accounts of Chemical Research, 46(3), 834-843. https://doi.org/10.1021/ar300029v
Qu, X., Alvarez, P. J. J., y Li, Q. (2013, 1 de agosto). Applications of nanotechnology in water and wastewater treatment. Water Research, 47(12), 3931-3946. https://doi.org/10.1016/j.watres.2012.09.058
Rehman, F., Thebo, K. H., Aamir, M., y Akhtar, J. (2020). Nanomembranes for water treatment. En A. Amrane, S. Rajendran, T. A. Nguyen, A. A. Assadi, A. M. Sharoba (Eds.), Nanotechnology in the Beverage Industry (pp. 207-240). Elsevier. https://doi.org/10.1016/B978-0-12-819941-1.00008-0
Shen, L., Jin, Z., Xu, W., Jiang, X., Shen, Y., Wang, Y., y Lu, Y. (2019). Enhanced Treatment of Anionic and Cationic Dyes in Wastewater through Live Bacteria Encapsulation Using Graphene Hydrogel. Industrial & Engineering Chemistry Research, 58(19), 7817-7824. https://doi.org/10.1021/acs.iecr.9b01950
Smallops. (2025). Aplicaciones de las nanopartículas de hierro. https://smallops.eu/aplicaciones-de-las-nanoparticulas-de-hierro/
Sun, X.-F., Qin, J., Xia, P.-F., Guo, B.-B., Yang, C.-M., Song, C., y Wang, S.-G. (2015, diciembre). Graphene oxide-silver nanoparticle membrane for biofouling control and water purification. Chemical Engineering Journal, 281, 53-59. https://doi.org/10.1016/j.cej.2015.06.059
Tota-Maharaj, K., y Paul, P. (2015, 20 de enero). Evaluation of the solar photocatalytic degradation of organochlorine compound trichloroethanoic acid using titanium dioxide and zinc oxide in the Caribbean region. Water Science and Technology: Water Supply, 15(3), 559-568. https://doi.org/10.2166/ws.2015.005
vta. (s. f.). vta Nanofloc®. https://vta.cc/es/productos/productos-de-sistema/vta-nanofloc
Westerhoff, P., Alvarez, P., Li, Q., Gardea-Torresdey, J., y Zimmerman, J. (2016, 16 de septiembre). Overcoming Implementation Barriers for Nanotechnology in Drinking Water Treatment. Environmental Science: Nano, 3(6), 1241-1253. https://doi.org/10.1039/c6en00183a
Publicado
Número
Sección
Licencia
Derechos de autor 2026 Revista Digital Universitaria

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Revista Digital Universitaria es editada por la Universidad Nacional Autónoma de México se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional. Basada en una obra en http://revista.unam.mx/.



