Biometric identification through human gait: approaches and developments
DOI:
https://doi.org/10.22201/cuaieed.16076079e.2024.25.2.9Keywords:
Human Gait Recognition (HGR), biometric characteristics, Recognition of people, model-based approach, appearance-based approachAbstract
In a context where the recognition of people takes center stage, particularly in the field of security, Human Gait Recognition (hgr) emerges as a key biometric technique. Focused on the way individuals walk, this approach has experienced a noteworthy surge in recent research due to its intrinsic advantages. The capability to perform recognition remotely, even without explicit consent, positions hgr as a cutting-edge tool. Two computational approaches stand out: model-based, that explores human body movement, and appearance-based, that extracts the essence of walking from silhouettes. hgr ‘s versatility lies in its independence from the type of camera used, providing detailed information on walking angles, stride frequency, and body part length. This work offers an evolutionary analysis of hgr over time, highlighting significant contributions that have set the course for research in the field.
References
Ariyanto, G., y Nixon, M. S. (2012, marzo). Marionette mass-spring model for 3D gait biometrics [Conferencia]. 2012 5th iapr International Conference on Biometrics (icb), New Delhi, India. https://doi.org/10.1109/ICB.2012.6199832.
BenAbdelkader, C, Cutler, R., y Davis, L. (2022). Stride and cadence as a biometric in automatic person identification and verification (pp. 372-377). Proceedings of Fifth ieee International Conference on Automatic Face Gesture Recognition, Washington, dc, usa. ieee. https://doi.org/10.1109/AFGR.2002.1004182.
Bouchrika, I. (2018). A Survey of Using Biometrics for Smart Visual Surveillance: Gait Recognition. En P. Karampelas y T. Bourlai (Eds.), Surveillance in Action. Advanced Sciences and Technologies for Security Applications (pp. 3-23). Springer, Cham. https://doi.org/10.1007/978-3-319-68533-5_1.
Cinemart. (2023, 17 de julio). MISSION: IMPOSSIBLE – ROGUE NATION (2015) | Underground Water Full Scene | Underwater Scene 4K uhd [Video]. YouTube. https://youtu.be/88gJeeydT4E?si=7Ca2R9sCBcYACyS3.
Cunado, D., Nixon, M.S., y Carter, J.N. (1997). Using gait as a biometric, via phase-weighted magnitude spectra. En J. Bigün, G. Chollet, y G. Borgefors, G. (Eds.), Audio- and Video-based Biometric Person Authentication. AVBPA 1997. Lecture Notes in Computer Science, 1206. Springer. https://doi.org/10.1007/BFb0015984.
Han, J. y Bhanu, B. (2006, febrero). Individual recognition using gait energy image. ieee Transactions on Pattern Analysis and Machine Intelligence, 28(2), 316-322. https://doi.org/10.1109/TPAMI.2006.38.
Lin, B., Zhang, S., y Bao, F. (2020). Gait Recognition with Multiple-Temporal-Scale 3D Convolutional Neural Network. En Proceedings of the 28th acm International Conference on Multimedia (3054-3062). Association for Computing Machinery. https://doi.org/10.1145/3394171.3413861.
Niyogi, S. A., y Adelson, E. H. (1994). Analyzing and recognizing walking figures in XYT. En 1994 Proceedings of ieee Conference on Computer Vision and Pattern Recognition (pp. 469-474). ieee Transactions on Pattern Analysis and Machine Intelligence, 27(2), 162-177. https://doi.org/10.1109/TPAMI.2005.39.
Shutler, J. D., Grant, M. G., Nixon, M. S., y Carter, J. N. (2004). On a large sequence-based human gait database. En A. Lotfi, y J. M. Garibaldi (Eds.), Applications and Science in Soft Computing. Advances in Soft Computing (pp. 339-346). Springer. https://doi.org/10.1007/978-3-540-45240-9_46.
Song, C., Huang, Y., Huang, Y., Jia, N., y Wang, L. (2019, diciembre). Gaitnet: An end-to-end network for gait based human identification. Pattern recognition, 96. https://doi.org/10.1016/j.patcog.2019.106988.
Thavalengal, S., Andorko, I., Drimbarean, A., Bigioi, P., y Corcoran, P. (2015, mayo). Proof-of-concept and evaluation of a dual function visible/nir camera for iris authentication in smartphones. ieee Transactions on Consumer Electronics, 61(2), 137-143). https://doi.org/10.1109/TCE.2015.7150566.
Yang, W., Hu, J., y Wang, S. (2014). A Delaunay quadrangle-based fingerprint authentication system with template protection using topology code for local registration and security enhancement. ieee transactions on Information Forensics and Security, 9(7), 1179-1192. http://dx.doi.org/10.1109/TIFS.2014.2328095.
Yoo, J.-H., Hwang, D., Moon, K.-Y., y Nixon, M. S. (2008). Automated human recognition by gait using neural network. En 2008 First Workshops on Image Processing Theory, Tools and Applications, Sousse, Tunisia (pp. 1-6). ieee. https://doi.org/10.1109/IPTA.2008.4743792.
Published
Issue
Section
License
Copyright (c) 2024 Revista Digital Universitaria

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Revista Digital Universitaria es editada por la Universidad Nacional Autónoma de México se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional. Basada en una obra en http://revista.unam.mx/.