Beyond “Crazy February”: The Response of Rivers and Lakes to Extreme Heat
DOI:
https://doi.org/10.22201/ceide.16076079e.2026.27.1.10Keywords:
heatwaves, climate change, inland aquatic ecosystems, water conservation, ecological balanceAbstract
Global warming manifests today through extreme phenomena such as heatwaves, with profound impacts on both terrestrial and aquatic ecosystems. While much research has focused on marine environments, the intensity and duration of these events are rapidly threatening inland aquatic systems: lakes, rivers, dams, and wetlands. In these water bodies, rising temperatures alter fundamental physical, chemical, and biological characteristics, jeopardizing ecological balance. Therefore, understanding the magnitude of heatwaves in freshwater is essential for strengthening prevention and conservation strategies for the goods and services these ecosystems provide. Protecting these environments against the climate crisis is, ultimately, about ensuring the resilience of biodiversity and society in the face of an increasingly extreme climate.
References
Adrian, R., O’Reilly, C. M., Zagarese, H., Baines, S. B., Hessen, D. O., Keller, W., Livingstone, D. M., Sommaruga, R., Straile, D., Van Donk, E., Weyhenmeyer, G. A., y Winder, M. (2009). Lakes as sentinels of climate change. Limnology and Oceanography, 54(6), 2283–2297. https://doi.org/10.4319/lo.2009.54.6_part_2.2283
Ballester, J., Quijal-Zamorano, M., Turrubiates, M. R. F., Robine, J. M., Basagaña, X., Tonne, C., Antó, J. M., y Achebak, H. (2023). Heat-related mortality in Europe during the summer of 2022. Nature Medicine, 29, 1857–1866. https://doi.org/10.1038/s41591-023-02419-z
Barrera-Hernández, L. F., Murillo-Parra, L. D., Ocaña-Zúñiga, J., Cabrera-Méndez, M., Echeverría-Castro, S. B., y Sotelo-Castillo, M. (2020). Causas, consecuencias y qué hacer frente al cambio climático: análisis de grupos focales con estudiantes y profesores universitarios. Revista Mexicana de Investigación Educativa, 25, 1103–1122.
Bartosiewicz, M., Laurion, I., Clayer, F., y Maranger, R. (2016). Heat-wave effects on oxygen, nutrients, and phytoplankton can alter global warming potential of gases emitted from a small shallow sake. Environmental Science & Technology, 50(12), 6267–6275. https://doi.org/10.1021/acs.est.5b06312
Bayat, H. S., He, F., Medina Madariaga, G., Escobar-Sierra, C., Prati, S., Peters, K., Jupke, J. F., Spaak, J. W., Manfrin, A., Juvigny-Khenafou, N. P. D., Chen, X., y Schäfer, R. B. (2025). Global thermal tolerance compilation for freshwater invertebrates and fish. Scientific Data, 12, 1488. https://doi.org/10.1038/s41597-025-05832-w
Borg, M., Bi, P., Nitschke, M., Williams, S., y McDonald, S. (2017). The impact of daily temperature on renal disease incidence: an ecological study. Environmental Health, 16(114). https://doi.org/10.1186/s12940-017-0331-4
Caroni, R., Piscia, R., y Manca, M. (2025). Indicators of Climate-Driven Change in Long-Term Zooplankton Composition: Insights from Lake Maggiore (Italy). Water, 17(4), 511. https://doi.org/10.3390/w17040511
Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z., Knowler, D. J., Lévêque, C., Naiman, R. J., Prieur-Richard, A. H., Soto, D., Stiassny, M. L., y Sullivan, C. A. (2006). Freshwater biodiversity: Importance, threats, status and conservation challenges. Biological Reviews, 81(2), 163–182. https://doi.org/10.1017/S1464793105006950
Duque, F. I., y Montoya, G. J. W. (2021). Cambio climático y urbanización. Cuadernos de Geografía: Revista Colombiana de Geografía, 30, 274–279.
Herrera, P. (2025, 13 de febrero). Olas de calor, desafío creciente en el ámbito mundial. Gaceta unam. https://www.gaceta.unam.mx/olas-de-calor-desafio-creciente-en-el-ambito-mundial/
Kazmi, S. S. U. H., Wang, Y., Cai, Y.-E., y Wang, Z. (2022). Temperature effects in single or combined with chemicals to the aquatic organisms: An overview of thermo-chemical stress. Ecological Indicators, 143, 109354. https://doi.org/10.1016/j.ecolind.2022.109354
Kim, J. O., Dimitriou, A., Forster, I., y Tseng, M. (2024). Heatwave-mediated decreases in phytoplankton quality negatively affect zooplankton productivity. Functional Ecology, 38(4), 778–791. https://doi.org/10.1111/1365-2435.14530
Li, X., Ma, D., Chen, Y., Li, K., Xu, B., Shi, X., Zhang, Y., Zeng, Y., y Hu, W. (2023). The unprecedented 2022 extreme summer heatwaves increased harmful cyanobacteria blooms. Science of the Total Environment, 882, 163853. https://doi.org/10.1016/j.scitotenv.2023.163853
Nava, A., Shimabukuro, J. S., Chmura, A. A., y Luz, S. L. B. (2017). The impact of global environmental changes on infectious disease emergence with a focus on risks for Brazil. ilar Journal, 58(3), 393–400. https://doi.org/10.1093/ilar/ilx034
Organización Meteorológica Mundial [wmo]. (2024). wmo confirms 2024 as warmest year on record at about 1.55°C above pre-industrial level. Recuperado de https://wmo.int/news/media-centre/wmo-confirms-2024-warmest-year-record-about-155degc-above-pre-industrial-level
Panel Intergubernamental sobre Cambio Climático [ipcc]. (2007). Climate change 2007: Synthesis report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team; R. K. Pachauri y A. Reisinger, eds.]. IPCC, Ginebra, Suiza.
Perkins-Kirkpatrick, S. E., y Gibson, P. B. (2017). Changes in regional heatwave characteristics as a function of increasing global temperature. Scientific Reports, 7, 12256. https://doi-org.pbidi.unam.mx:2443/10.1038/s41598-017-12520-2
Perkins-Kirkpatrick, S., Barriopedro, D., Jha, R., y Kornhuber, K. (2024). Extreme terrestrial heat in 2023. Nature Reviews Earth Environment, 5, 244–246. https://doi.org/10.1038/s43017-024-00536-y
Perkins, S. E., y Alexander, L. V. (2013). On the measurement of heat waves. Journal Climate, 156, 4500–4517. https://doi.org/10.1175/JCLI-D-12-00383.1
Sterner, R. W., Keeler, B., Polasky, S., Poudel, R., Rhude, K., y Rogers, M. (2020). Ecosystem services of Earth’s largest freshwater lakes. Ecosystem Services, 41, 101046. https://doi.org/10.1016/j.ecoser.2019.101046
Van Aalst, M. K. (2006). The impact of climate change on the risk of natural disasters. Disasters, 30(1), 5–18. https://doi.org/10.1111/j.1467-9523.2006.00303.x
Woolway, R. I., Anderson, N. J., Jennings, E., Shatwell, T., Golub, M., Pierson, D. C., y Maberly, S. C. (2021). Lake heatwaves under climate change. Nature, 589, 402–407. https://doi.org/10.1038/s41586-020-03119-1
Zhang, Y., Shi, K., Woolway, R. I., Wang, X., y Zhang, Y. (2025). Climate warming and heatwaves accelerate global lake deoxygenation. Science Advances, 11(12), artículo eadt5369. https://doi.org/10.1126/sciadv.adt5369
Published
Issue
Section
License
Copyright (c) 2026 Revista Digital Universitaria

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Revista Digital Universitaria es editada por la Universidad Nacional Autónoma de México se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional. Basada en una obra en http://revista.unam.mx/.



