Cuando la inteligencia artificial escucha a las moléculas

Autores/as

  • Mtra. Mildret Guadalupe Martínez Gámez Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Altamira, Instituto Politécnico Nacional, México https://orcid.org/0009-0005-7611-5386
  • Dr. Hernán Peraza Vázquez Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Altamira, Instituto Politécnico Nacional, México https://orcid.org/0000-0002-7119-3108

DOI:

https://doi.org/10.22201/ceide.16076079e.2025.26.3.3

Palabras clave:

inteligencia artificial, espectroscopía ftir, análisis molecular, tecnología en salud, seguridad alimentaria

Resumen

¿Sabías que una computadora puede ayudarte a detectar enfermedades o saber si un alimento es seguro, sólo analizando cómo vibra una molécula? La inteligencia artificial (ia) está cambiando las reglas del juego en la ciencia moderna, especialmente en una técnica llamada espectroscopía ftir. Esta herramienta permite “escuchar” las vibraciones de las moléculas para conocer su estructura, algo que antes requería horas de análisis por parte de especialistas. Ahora, gracias a la ia, este proceso es más rápido, preciso y accesible. Este artículo explora cómo la combinación entre ia y ftir está revolucionando campos como el diagnóstico temprano del cáncer o el control de calidad de los alimentos. ¿Cómo lo logran? Mediante algoritmos capaces de reconocer patrones invisibles al ojo humano, que ayudan a tomar decisiones críticas en cuestión de minutos. Además, conocerás cómo estas tecnologías están siendo aplicadas en el mundo real y qué desafíos aún deben superarse. ¿Puede una red neuronal detectar un tumor? ¿O decirnos si una grasa es saludable? Acompáñanos a descubrir cómo la ciencia y la inteligencia artificial están trabajando juntas para entender mejor lo que no podemos ver… pero que está en todo lo que nos rodea.

Biografía del autor/a

Mtra. Mildret Guadalupe Martínez Gámez, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Altamira, Instituto Politécnico Nacional, México

Es egresada de Ingeniería Industrial y de Sistemas por la Universidad del Noreste (une). Obtuvo la maestría en Tecnología Avanzada por el Instituto Politécnico Nacional (cicata, Altamira), donde actualmente cursa el doctorado en el mismo programa. Reside en México y su trayectoria se ha enfocado en la optimización no lineal con restricciones, el desarrollo de algoritmos bioinspirados y la aplicación de inteligencia artificial en áreas estratégicas como la salud y el medio ambiente. Sus intereses de investigación incluyen la innovación en métodos de optimización y la implementación de soluciones tecnológicas para enfrentar desafíos globales.

Dr. Hernán Peraza Vázquez, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Altamira, Instituto Politécnico Nacional, México

Es egresado de la Facultad de Matemáticas de la Universidad Autónoma de Yucatán (uady). Cuenta con una maestría en Computación por el itcm y un doctorado en Tecnología Avanzada por el Instituto Politécnico Nacional (ipn). Es miembro del Sistema Nacional de Investigadores (nivel i) y reside en México. Su trayectoria se ha centrado en la optimización no lineal con restricciones, algoritmos bioinspirados e inteligencia artificial aplicada a sectores como la salud, la energía y el medio ambiente. Actualmente, lidera el grupo de Instrumentación Electrónica y Soft-Computing del cicata–ipn, Altamira.

Citas

Acosta-Jiménez, S., González-Chávez, S. A., Camarillo-Cisneros, J., Pacheco-Tena, C. F., y Ochoa-Albíztegui, R. E. (2023). Aplicaciones de la inteligencia artificial en la medicina y la imagenología médica. Revista Anales de Radiología México, 22(2). https://doi.org/10.24875/ARM.21000093.

Ayeni, J. A. (2022). Convolutional Neural Network (cnn): The architecture and applications. Applied Journal of Physical Science, 4(4), 42–50. https://doi.org/10.31248/AJPS2022.085.

De Lara-Garcia, J. (2022). Inteligencia Artificial y Justicia. DIVULGARE Boletín Científico de La Escuela Superior de Actopan, 9(17), 41–46. https://doi.org/10.29057/esa.v9i17.8093.

Feng, L., Wu, B., Zhu, S., He, Y., y Zhang, C. (2021). Application of Visible/Infrared Spectroscopy and Hyperspectral Imaging with Machine Learning Techniques for Identifying Food Varieties and Geographical Origins. Frontiers in Nutrition, 8. https://doi.org/10.3389/fnut.2021.680357.

Fontes, V., Cubas Pereira, D., Pupin, B., y Sakane, K. K. (2020). Aplicação de espectroscopia no infravermelho: Como ferramenta para análise quantitativa de orégano. Revista Univap, 26(51), 15. https://doi.org/10.18066/revistaunivap.v26i51.2451.

Gallo, A., Pérez, F., y Salinas, D. (2021). Minería de datos y proyección a corto plazo de la demanda de potencia en el sistema eléctrico ecuatoriano. Revista Técnica “Energía,” 18(1), 72–85. https://doi.org/10.37116/revistaenergia.v18.n1.2021.461.

Hannafon, B. N. (2021). Involvement of the Tumor Microenvironment in the Pathogenesis of Breast Cancer. The American Journal of Pathology, 191(8), 1328–1329. https://doi.org/10.1016/j.ajpath.2021.05.012.

Lahlali, R., Karunakaran, C., Wang, L., Willick, I., Schmidt, M., Liu, X., Borondics, F., Forseille, L., Fobert, P. R., Tanino, K., Peng, G., y Hallin, E. (2015). Synchrotron based phase contrast X-ray imaging combined with ftir spectroscopy reveals structural and biomolecular differences in spikelets play a significant role in resistance to Fusarium in wheat. BMC Plant Biology, 15(1), 24. https://doi.org/10.1186/s12870-014-0357-5.

Lara Andino, A. R., Sacatoro Toaquiza, J. I., León Vinueza, A. G., Jarrín Trujillo, G. M., y Simancas Malla, F. M. (2024). La evaluación, la inteligencia artificial y otras tecnologías de vanguardia en Educación General Básica Superior. Prometeo Conocimiento Científico, 4(1), e85. https://doi.org/10.55204/pcc.v4i1.e85.

Liu, S., Thung, K.-H., Lin, W., Yap, P.-T., y Shen, D. (2020). Real-Time Quality Assessment of Pediatric MRI via Semi-Supervised Deep Nonlocal Residual Neural Networks. ieee Transactions on Image Processing, 29, 7697–7706. https://doi.org/10.1109/TIP.2020.2992079.

Nandiyanto, A. B. D., Ragadhita, R., y Fiandini, M. (2022). Interpretation of Fourier Transform Infrared Spectra (ftir): A Practical Approach in the Polymer/Plastic Thermal Decomposition. Indonesian Journal of Science and Technology, 8(1), 113–126. https://doi.org/10.17509/ijost.v8i1.53297.

Poggialini, F., Campanella, B., Legnaioli, S., Raneri, S., y Palleschi, V. (2022). Comparison of Convolutional and Conventional Artificial Neural Networks for Laser-Induced Breakdown Spectroscopy Quantitative Analysis. Applied Spectroscopy, 76(8), 959–966. https://doi.org/10.1177/00037028221091300.

Rohman, A., Ghazali, M. A. B., Windarsih, A., Irnawati, I., Riyanto, S., Yusof, F. M., y Mustafa, S. (2020). Comprehensive Review on Application of ftir Spectroscopy Coupled with Chemometrics for Authentication Analysis of Fats and Oils in the Food Products. Molecules, 25(22), 5485. https://doi.org/10.3390/molecules25225485.

Saleem, M. A., Senan, N., Wahid, F., Aamir, M., Samad, A., y Khan, M. (2022). Comparative Analysis of Recent Architecture of Convolutional Neural Network. Mathematical Problems in Engineering, 2022, 1–9. https://doi.org/10.1155/2022/7313612.

Webb-Linares, L. J., Reynoso-Zeballos, G. E., y Lagravere-Vich, M. (2014). Evaluación de la microdureza superficial de una resina compuesta según fuente de luz, su opacidad y tiempo de exposición. Revista Estomatológica Herediana, 19(2), 96. https://doi.org/10.20453/reh.v19i2.1828.

Publicado

12-05-2025