Cuando la inteligencia artificial escucha a las moléculas
DOI:
https://doi.org/10.22201/ceide.16076079e.2025.26.3.3Palabras clave:
inteligencia artificial, espectroscopía ftir, análisis molecular, tecnología en salud, seguridad alimentariaResumen
¿Sabías que una computadora puede ayudarte a detectar enfermedades o saber si un alimento es seguro, sólo analizando cómo vibra una molécula? La inteligencia artificial (ia) está cambiando las reglas del juego en la ciencia moderna, especialmente en una técnica llamada espectroscopía ftir. Esta herramienta permite “escuchar” las vibraciones de las moléculas para conocer su estructura, algo que antes requería horas de análisis por parte de especialistas. Ahora, gracias a la ia, este proceso es más rápido, preciso y accesible. Este artículo explora cómo la combinación entre ia y ftir está revolucionando campos como el diagnóstico temprano del cáncer o el control de calidad de los alimentos. ¿Cómo lo logran? Mediante algoritmos capaces de reconocer patrones invisibles al ojo humano, que ayudan a tomar decisiones críticas en cuestión de minutos. Además, conocerás cómo estas tecnologías están siendo aplicadas en el mundo real y qué desafíos aún deben superarse. ¿Puede una red neuronal detectar un tumor? ¿O decirnos si una grasa es saludable? Acompáñanos a descubrir cómo la ciencia y la inteligencia artificial están trabajando juntas para entender mejor lo que no podemos ver… pero que está en todo lo que nos rodea.
Citas
Acosta-Jiménez, S., González-Chávez, S. A., Camarillo-Cisneros, J., Pacheco-Tena, C. F., y Ochoa-Albíztegui, R. E. (2023). Aplicaciones de la inteligencia artificial en la medicina y la imagenología médica. Revista Anales de Radiología México, 22(2). https://doi.org/10.24875/ARM.21000093.
Ayeni, J. A. (2022). Convolutional Neural Network (cnn): The architecture and applications. Applied Journal of Physical Science, 4(4), 42–50. https://doi.org/10.31248/AJPS2022.085.
De Lara-Garcia, J. (2022). Inteligencia Artificial y Justicia. DIVULGARE Boletín Científico de La Escuela Superior de Actopan, 9(17), 41–46. https://doi.org/10.29057/esa.v9i17.8093.
Feng, L., Wu, B., Zhu, S., He, Y., y Zhang, C. (2021). Application of Visible/Infrared Spectroscopy and Hyperspectral Imaging with Machine Learning Techniques for Identifying Food Varieties and Geographical Origins. Frontiers in Nutrition, 8. https://doi.org/10.3389/fnut.2021.680357.
Fontes, V., Cubas Pereira, D., Pupin, B., y Sakane, K. K. (2020). Aplicação de espectroscopia no infravermelho: Como ferramenta para análise quantitativa de orégano. Revista Univap, 26(51), 15. https://doi.org/10.18066/revistaunivap.v26i51.2451.
Gallo, A., Pérez, F., y Salinas, D. (2021). Minería de datos y proyección a corto plazo de la demanda de potencia en el sistema eléctrico ecuatoriano. Revista Técnica “Energía,” 18(1), 72–85. https://doi.org/10.37116/revistaenergia.v18.n1.2021.461.
Hannafon, B. N. (2021). Involvement of the Tumor Microenvironment in the Pathogenesis of Breast Cancer. The American Journal of Pathology, 191(8), 1328–1329. https://doi.org/10.1016/j.ajpath.2021.05.012.
Lahlali, R., Karunakaran, C., Wang, L., Willick, I., Schmidt, M., Liu, X., Borondics, F., Forseille, L., Fobert, P. R., Tanino, K., Peng, G., y Hallin, E. (2015). Synchrotron based phase contrast X-ray imaging combined with ftir spectroscopy reveals structural and biomolecular differences in spikelets play a significant role in resistance to Fusarium in wheat. BMC Plant Biology, 15(1), 24. https://doi.org/10.1186/s12870-014-0357-5.
Lara Andino, A. R., Sacatoro Toaquiza, J. I., León Vinueza, A. G., Jarrín Trujillo, G. M., y Simancas Malla, F. M. (2024). La evaluación, la inteligencia artificial y otras tecnologías de vanguardia en Educación General Básica Superior. Prometeo Conocimiento Científico, 4(1), e85. https://doi.org/10.55204/pcc.v4i1.e85.
Liu, S., Thung, K.-H., Lin, W., Yap, P.-T., y Shen, D. (2020). Real-Time Quality Assessment of Pediatric MRI via Semi-Supervised Deep Nonlocal Residual Neural Networks. ieee Transactions on Image Processing, 29, 7697–7706. https://doi.org/10.1109/TIP.2020.2992079.
Nandiyanto, A. B. D., Ragadhita, R., y Fiandini, M. (2022). Interpretation of Fourier Transform Infrared Spectra (ftir): A Practical Approach in the Polymer/Plastic Thermal Decomposition. Indonesian Journal of Science and Technology, 8(1), 113–126. https://doi.org/10.17509/ijost.v8i1.53297.
Poggialini, F., Campanella, B., Legnaioli, S., Raneri, S., y Palleschi, V. (2022). Comparison of Convolutional and Conventional Artificial Neural Networks for Laser-Induced Breakdown Spectroscopy Quantitative Analysis. Applied Spectroscopy, 76(8), 959–966. https://doi.org/10.1177/00037028221091300.
Rohman, A., Ghazali, M. A. B., Windarsih, A., Irnawati, I., Riyanto, S., Yusof, F. M., y Mustafa, S. (2020). Comprehensive Review on Application of ftir Spectroscopy Coupled with Chemometrics for Authentication Analysis of Fats and Oils in the Food Products. Molecules, 25(22), 5485. https://doi.org/10.3390/molecules25225485.
Saleem, M. A., Senan, N., Wahid, F., Aamir, M., Samad, A., y Khan, M. (2022). Comparative Analysis of Recent Architecture of Convolutional Neural Network. Mathematical Problems in Engineering, 2022, 1–9. https://doi.org/10.1155/2022/7313612.
Webb-Linares, L. J., Reynoso-Zeballos, G. E., y Lagravere-Vich, M. (2014). Evaluación de la microdureza superficial de una resina compuesta según fuente de luz, su opacidad y tiempo de exposición. Revista Estomatológica Herediana, 19(2), 96. https://doi.org/10.20453/reh.v19i2.1828.
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Revista Digital Universitaria

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Revista Digital Universitaria es editada por la Universidad Nacional Autónoma de México se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional. Basada en una obra en http://revista.unam.mx/.