When artificial intelligence listens to molecules
DOI:
https://doi.org/10.22201/ceide.16076079e.2025.26.3.3Keywords:
artificial intelligence, FTIR Spectroscopy, molecular analysis, health technology, food safetyAbstract
Did you know that a computer can help you detect diseases or determine if a food is safe, just by analyzing how a molecule vibrates? Artificial intelligence (ai) is changing the game in modern science, especially in a technique called ftir spectroscopy. This tool allows us to “listen” to the vibrations of molecules to understand their structure, something that once required hours of analysis by experts. Now, thanks to ai, this process is faster, more accurate, and more accessible. This article explores how the combination of ai and ftir is revolutionizing fields like early cancer diagnosis and food quality control. How do they do it? By using algorithms capable of recognizing patterns invisible to the human eye, which help make critical decisions in minutes. You’ll also learn how these technologies are being applied in the real world and the challenges that still need to be overcome. Can a neural network detect a tumor? Or tell us if a fat is healthy? Join us to discover how science and artificial intelligence are working together to better understand what we can’t see… but is in everything around us.
References
Acosta-Jiménez, S., González-Chávez, S. A., Camarillo-Cisneros, J., Pacheco-Tena, C. F., y Ochoa-Albíztegui, R. E. (2023). Aplicaciones de la inteligencia artificial en la medicina y la imagenología médica. Revista Anales de Radiología México, 22(2). https://doi.org/10.24875/ARM.21000093.
Ayeni, J. A. (2022). Convolutional Neural Network (cnn): The architecture and applications. Applied Journal of Physical Science, 4(4), 42–50. https://doi.org/10.31248/AJPS2022.085.
De Lara-Garcia, J. (2022). Inteligencia Artificial y Justicia. DIVULGARE Boletín Científico de La Escuela Superior de Actopan, 9(17), 41–46. https://doi.org/10.29057/esa.v9i17.8093.
Feng, L., Wu, B., Zhu, S., He, Y., y Zhang, C. (2021). Application of Visible/Infrared Spectroscopy and Hyperspectral Imaging with Machine Learning Techniques for Identifying Food Varieties and Geographical Origins. Frontiers in Nutrition, 8. https://doi.org/10.3389/fnut.2021.680357.
Fontes, V., Cubas Pereira, D., Pupin, B., y Sakane, K. K. (2020). Aplicação de espectroscopia no infravermelho: Como ferramenta para análise quantitativa de orégano. Revista Univap, 26(51), 15. https://doi.org/10.18066/revistaunivap.v26i51.2451.
Gallo, A., Pérez, F., y Salinas, D. (2021). Minería de datos y proyección a corto plazo de la demanda de potencia en el sistema eléctrico ecuatoriano. Revista Técnica “Energía,” 18(1), 72–85. https://doi.org/10.37116/revistaenergia.v18.n1.2021.461.
Hannafon, B. N. (2021). Involvement of the Tumor Microenvironment in the Pathogenesis of Breast Cancer. The American Journal of Pathology, 191(8), 1328–1329. https://doi.org/10.1016/j.ajpath.2021.05.012.
Lahlali, R., Karunakaran, C., Wang, L., Willick, I., Schmidt, M., Liu, X., Borondics, F., Forseille, L., Fobert, P. R., Tanino, K., Peng, G., y Hallin, E. (2015). Synchrotron based phase contrast X-ray imaging combined with ftir spectroscopy reveals structural and biomolecular differences in spikelets play a significant role in resistance to Fusarium in wheat. BMC Plant Biology, 15(1), 24. https://doi.org/10.1186/s12870-014-0357-5.
Lara Andino, A. R., Sacatoro Toaquiza, J. I., León Vinueza, A. G., Jarrín Trujillo, G. M., y Simancas Malla, F. M. (2024). La evaluación, la inteligencia artificial y otras tecnologías de vanguardia en Educación General Básica Superior. Prometeo Conocimiento Científico, 4(1), e85. https://doi.org/10.55204/pcc.v4i1.e85.
Liu, S., Thung, K.-H., Lin, W., Yap, P.-T., y Shen, D. (2020). Real-Time Quality Assessment of Pediatric MRI via Semi-Supervised Deep Nonlocal Residual Neural Networks. ieee Transactions on Image Processing, 29, 7697–7706. https://doi.org/10.1109/TIP.2020.2992079.
Nandiyanto, A. B. D., Ragadhita, R., y Fiandini, M. (2022). Interpretation of Fourier Transform Infrared Spectra (ftir): A Practical Approach in the Polymer/Plastic Thermal Decomposition. Indonesian Journal of Science and Technology, 8(1), 113–126. https://doi.org/10.17509/ijost.v8i1.53297.
Poggialini, F., Campanella, B., Legnaioli, S., Raneri, S., y Palleschi, V. (2022). Comparison of Convolutional and Conventional Artificial Neural Networks for Laser-Induced Breakdown Spectroscopy Quantitative Analysis. Applied Spectroscopy, 76(8), 959–966. https://doi.org/10.1177/00037028221091300.
Rohman, A., Ghazali, M. A. B., Windarsih, A., Irnawati, I., Riyanto, S., Yusof, F. M., y Mustafa, S. (2020). Comprehensive Review on Application of ftir Spectroscopy Coupled with Chemometrics for Authentication Analysis of Fats and Oils in the Food Products. Molecules, 25(22), 5485. https://doi.org/10.3390/molecules25225485.
Saleem, M. A., Senan, N., Wahid, F., Aamir, M., Samad, A., y Khan, M. (2022). Comparative Analysis of Recent Architecture of Convolutional Neural Network. Mathematical Problems in Engineering, 2022, 1–9. https://doi.org/10.1155/2022/7313612.
Webb-Linares, L. J., Reynoso-Zeballos, G. E., y Lagravere-Vich, M. (2014). Evaluación de la microdureza superficial de una resina compuesta según fuente de luz, su opacidad y tiempo de exposición. Revista Estomatológica Herediana, 19(2), 96. https://doi.org/10.20453/reh.v19i2.1828.
Published
Issue
Section
License
Copyright (c) 2025 Revista Digital Universitaria

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Revista Digital Universitaria es editada por la Universidad Nacional Autónoma de México se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional. Basada en una obra en http://revista.unam.mx/.