What if we could see heat? What can’t be seen but can be felt
DOI:
https://doi.org/10.22201/ceide.16076079e.2025.26.3.8Keywords:
thermography, infrared, radiation, inspection, technologyAbstract
Have you ever wondered how scientists can “see” heat? Infrared thermography, a technology capable of capturing the thermal radiation emitted by objects, allows us to explore a world invisible to the human eye. Although it is well known for its use in nighttime observation of people and animals, this technique has much more to offer. In its active form, heat is not only detected, but also stimulated in a controlled manner, opening up a range of possibilities for analyzing materials without damaging them. This article takes you to the core of active infrared thermography: how it works, its applications, and—most excitingly—how you can use conventional cameras to achieve surprising results, without the need for expensive professional equipment. Thanks to this accessibility, the technique could become a key tool in education, research, and industry, democratizing access to a powerful technology. Discover how this innovative technique is changing the way we understand heat—and how its potential is still far from fully explored.
References
Alonso, M., Finn, E.J. (1986) Física, Volumen III: Fundamentos cuánticos y estadísticos. Addison-Wesley
Bedoya, A., Colom, M., Mendioroz, A., Salazar, A., y Marín, E. (2020). Measurement of the thermal conductivity of fluids using laser spot lock-in thermography. Measurement, 158, 107740. https://doi.org/10.1016/j.measurement.2020.107740.
Bedoya, A., Marín, E., Puldón, J. J., y García Segundo, C. (2023). On the thermal characterization of insulating solids using laser spot thermography in a front detection configuration. International Journal of Thermophysics, 44, 27. https://doi.org/10.1007/s10765-022-03138-2.
Budzier, H., & Gerlach, G. (2018). Active Thermography. En Springer eBooks (pp. 1-19). https://doi.org/10.1007/978-3-319-30050-4_13-1.
Ciampa, F., Mahmoodi, P., Pinto, F., y Meo, M. (2018). Recent advances in active infrared thermography for non-destructive testing of aerospace components. Sensors, 18, 609. https://doi.org/10.3390/s18020609.
Gaverina, L., Bensalem, M., Bedoya, A., Gonzalez, J., Sommier, A., Battaglia, J. L., Salazar, A., Mendioroz, A., Oleaga, A., Batsale, J. C., y Pradere, C. (2019). Constant velocity flying spot for the estimation of in-plane thermal diffusivity in anisotropic materials. International Journal of Thermal Sciences, 145, 1–13. https://doi.org/10.1016/j.ijthermalsci.2019.106000.
González, J., Bedoya, A., Mendioroz, A., y Salazar, A. (2019). Measuring the thermal resistance of vertical interfaces separating two different media using infrared thermography. International Journal of Thermal Sciences, 135, 410. https://doi.org/10.1016/j.ijthermalsci.2018.09.026.
Ibarra-Castanedo, C., Tarpani, J. R., y Maldague, X. P. V. (2013). Nondestructive testing with thermography. European Journal Of Physics, 34(6), S91-S109. https://doi.org/10.1088/0143-0807/34/6/s91.
Kim, H., Lamichhane, N., Kim, C., y Shrestha, R. (2023). Innovations in building diagnostics and condition monitoring: A comprehensive review of infrared thermography applications. Buildings, 13(11), 2829. https://doi.org/10.3390/buildings13112829.
Li, L., Jia, X., y Fan, K. (2024). Recent advance in nondestructive imaging technology for detecting quality of fruits and vegetables: A review. Critical Reviews in Food Science and Nutrition, 1–19. https://doi.org/10.1080/10408398.2024.2404639.
Maldague, X. P. V. (2012). Nondestructive evaluation of materials by infrared thermography. Springer Science Business Media.
Maldague, X. P. V. (2001). Theory and practice of infrared technology for nondestructive testing. Wiley-Interscience.
McGraw-Hill Education. (1998). Handbook of Heat Transfer. McGraw-Hill Education – Access Engineering. https://www.accessengineeringlibrary.com/content/book/9780070535558.
Parihar, G., Saha, S., y Giri, L. (2021). Application of infrared thermography for irrigation scheduling of horticulture plants. Smart Agricultural Technology, 1, 100021. https://doi.org/10.1016/j.atech.2021.100021.
Rippa, M., Pagliarulo, V., Lanzillo, A., Grilli, M., Fatigati, G., Rossi, P., Cennamo, P., Trojsi, G., Ferraro, P., y Mormile, P. (2021). Active thermography for non-invasive inspection of an artwork on poplar panel: Novel approach using principal component thermography and absolute thermal contrast. Journal of Nondestructive Evaluation, 40, 21. https://doi.org/10.1007/s10921-021-00755-z.
Stoynova, A., Bonev, B., Kafadarova, N., y Rizanov, S. (2022). Infrared measurements of temperature anomalies in electronic devices. En IEEE 9th Electronics System-Integration Technology Conference (ESTC), Sibiu, Rumania, 509–515. https://doi.org/10.1109/ESTC55720.2022.9939431.
Strasse, W., Ranciaro, M., De Oliveira, K., Campos, D., Mendonça, C., Soni, J., Mendes, J., Nogueira-Neto, G., y Nohama, P. (2022). Thermography applied in the diagnostic assessment of bone fractures. Research on Biomedical Engineering, 38, 733–745. https://doi.org/10.1007/s42600-022-00206-2.
Wang, X., Liu, L., Duan, R., Liu, Y., Wei, Z., Yang, X., Liu, X., y Li, Z. (2022). A method for leak detection in buried pipelines based on soil heat and moisture. International Communications in Heat and Mass Transfer, 135, 106123. https://doi.org/10.1016/j.icheatmasstransfer.2022.106123.
Published
Issue
Section
License
Copyright (c) 2025 Revista Digital Universitaria

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Revista Digital Universitaria es editada por la Universidad Nacional Autónoma de México se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional. Basada en una obra en http://revista.unam.mx/.