Digital image processing applied to morphological recognition of impact structures in the earth’s surface
Keywords:
Radarsat-1, impact craters, speckle effect, segmentation, ANN classification, diversity and equity in machine learningAbstract
Satellite and radar image processing is the starting point in the geomorphological mapping and aims to characterize objects by shape, structure or color. This paper presents these images correcting as the first step in the detection of impact craters, such as BP and Oasis (Libya), which have been characterized by analyzing radar images (Radarsat-1) and used as standards of reference to differentiate impact craters from those of volcanic origin. The analysis of Radarsat-1 imagery consists of: filtering (known as speckle), segmenting (partition of the image into regions with common characteristics) and classifying (grouping of pixels based on selected features). About this latter action, this paper proposes automatic processes that classify, from imagery data corrected from filtering and segmentation, the geomorphic objects into two groups: impact and volcanics. The relevance of this classifier computer system is that it acts with Machine Learning based on artificial neural networks (ANN).
References
ABATE, B., C. Koeberl, F. J. Kruger y J. R. Underwood Jr., “BP and Oasis impact structures, Libya, and their relation to Libyan Desert Glass”, en Dressler, B.C., Sharpton, V.L., (Eds.) Large Meteorite Impacts and Planetary Evolution II, Geologycal Society of America, Inc., 1999, Special Paper 39, pp. 177-192.
BARAKAT A., “El-Baz crater: basaltic intrusion versus meteoritic impact crater”, Annals of Geological Survey of Egypt, 1994, Núm. XXIV, pp. 167-177.
BERMÚDEZ GONZÁLEZ et al., “Estudio comparativo de algoritmos para la reducción del “speckle” en imágenes SAR”, Libro de Actas-URSI2006, 2006 [en línea]: .
CANADIAN SPACE AGENCY, 2012, [en línea]: <http://www.asc-csa.gc.ca/eng/ satellites/radarsat1/mosaic.asp> [Consulta: 28 de agosto de 2012].
CIGOLINI C. et al., “Endogenous and nonimpact origin of the Arkenu circular structures (al-Kufra basin –SE Libya)”, Meteoritics & Planetary Science, 2012, Vol. 47, Núm. 11, pp. 1772-1788.
CLAYTON, P. A., “The western side of the Gilf Kebir”, Geogr. J., 1933, Núm. 81, pp. 254-259.
DI MARTINO M., et al., “Non-impact origin of the Crater Field in the Gilf Kebir region (SW Egypt)”, 40th ESLAB Firs International Conference on Impact Cratering in the Solar System, 08-12 May. Proceedings, Países Bajos: European Space Agency, European Space and Technology Centre (ESTEC), 2006, pp. 43-48.
EL-BAZ F. y Ghoneim E., “Largest crater shape in the Great Sahara revealed by multispectral images and radar data”, International Journal of Remote Sensing, 2007, Vol. 28, pp. 451-458.
EL-BAZ, F., “The ‘Uweinat Desert’ of Egypt, Libya and Sudan: a fertile field for planetary comparisons of crater forms”, en F. El-Baz y T.A. Maxwell (Eds.), Desert landforms of southwest Egypt: a basis for comparison with Mars, Washington DC: National Air and Space Museum, 1982, pp. 251-253.
ESA Earth Online, NEST 4C-1.1, 2014 [Software computacional] [en línea]: .
Exelis Visual Information Solutions, ENVI 4.5, 2014, [Software computacional] [en línea]: <http://www.exelisvis.com/ProductsServices/ENVIProducts.aspx>.
FOLCO, L. et al., “The Kamil Crater in Egypt”, Science, 2010, Vol. 339, Núm. 5993, pp. 804.
GHONEIM E. M., “Ibn-Batutah: A possible simple impact structure in southeastern Libya, a remote sensing study”, Geomorphology, 2009, Núm. 103, pp. 341-350.
GONZALEZ, R. C., R. E. Woods, Digital Image Processing, 2nd ed., Upper Saddle River, NJ: Prentice Hall, 2002.
InfoSat Geomática, ERDAS IMAGINE, 2014, [Software computacional] [en línea]: <http://www.erdas.com.ar/productos_imagine.htm>.
KOEBERL, C., W.U. Reimold, J. Plescia, “BP and Oasis impact structures, Libya: Remote Sensing and Field Studies”, en Koeberl C. y H., Henkel (Eds.), Impact Tectonic, Países Bajos: Springer-Verlag Berlin Heidelberg, 2005, pp. 161-190.
LIRA, J. y L. Frulla, “An automated region growing algorithm for segmentation of texture regions in SAR images”, International Journal of Remote Sensing, 1998, Vol. 19, Núm.18, pp. 3595-3606.
LIRA, J., Introducción al tratamiento digital de imágenes. Ciencia de la computación, México: Instituto Politécnico Nacional, Universidad Nacional Autónoma de México, Fondo de Cultura Económica, 2002.
MARÍN CASTRO, Maribel Angélica, Modelo Jerárquico para la clasificación de galaxias, Luis Enrique Sucar Sucar, Jesús A. González Bernal y Raquel Díaz Hernández [dir.], Tesis de Maestría, Puebla: INAOE, 2012.
MVTec Software GmbH, MVTEC HALCON 9.0, 2014, [Software computacional] [en línea]: <http://www.mvtec.com/>.
ORTI, L., et al., “Non-impact origin of the crater-like structures in the Gilf Kebir area (Egypt): Implications for the geology of Eastern Sahara”, Meteoritics & Planetary Science, 2008, Vol. 43, Núm. 10, pp. 1629-1639.
PAILLOU, Ph. et al., “Discovery of the largest crater field on Earth in the Gilf Kebir region, Egypt”, Comptes Rendas Geoscience, 2004, Núm. 336, pp. 1491-1500.
SHI ZHENGHAO y B. Fung Ko, “A Comparison of Digital Speckle Filters”, Proceedings of IGARSS, 1994, Núm. 94, pp. 2129-2133.
Published
Issue
Section
License
Copyright (c) 2017 Revista Digital Universitaria

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Revista Digital Universitaria es editada por la Universidad Nacional Autónoma de México se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional. Basada en una obra en http://revista.unam.mx/.